Full text

Turn on search term navigation

© 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Patients with advanced hepatocellular carcinoma (HCC) are often unable to tolerate chemotherapy due to liver dysfunction in the setting of cirrhosis. We investigate high‐density lipoprotein (HDL)‐mimicking peptide phospholipid scaffold (HPPS), which are nanoparticles that capitalize on normal lipoprotein metabolism and transport, as a solution for directed delivery of small interfering RNA (siRNA) cargo into HCC cells. Spalt‐like transcription factor 4 (SALL4), a fetal oncoprotein expressed in aggressive HCCs, is specifically targeted as a case study to evaluate the efficacy of HPPS carrying siRNA cargo. HPPS containing different formulations of siRNA therapy against SALL4 were generated specifically for HCC cells. These were investigated both in vitro and in vivo using fluorescence imaging. HPPS‐SALL4 effectively bound to scavenger receptor, class B type 1 (SR‐BI) and delivered the siRNA cargo into HCC cells, as seen in vitro. HPPS‐SALL4 effectively inhibited HCC tumor growth (P < 0.05) and induced a 3‐fold increase in apoptosis of the cancer cells in vivo compared to HPPS‐scramble. Additionally, there was no immunogenicity associated with HPPS‐SALL4 as measured by cytokine production. Conclusion: We have developed unique HDL‐like nanoparticles that directly deliver RNA interference (RNAi) therapy against SALL4 into the cytosol of HCC cells, effectively inhibiting HCC tumor growth without any systemic immunogenicity. This therapeutic modality avoids the need for hepatic metabolism in this cancer, which develops in the setting of cirrhosis and liver dysfunction. These natural lipoprotein‐like nanoparticles with RNAi therapy are a promising therapeutic strategy for HCC.

Details

Title
Lipoprotein‐Like Nanoparticle Carrying Small Interfering RNA Against Spalt‐Like Transcription Factor 4 Effectively Targets Hepatocellular Carcinoma Cells and Decreases Tumor Burden
Author
Cruz, William 1 ; Huang, Huang 1 ; Barber, Brian 1 ; Pasini, Elisa 2 ; Ding, Lili 3 ; Zheng, Gang 4 ; Chen, Juan 3 ; Bhat, Mamatha 5 

 Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; DLVR Therapeutics, University of Toronto, Toronto, ON, Canada 
 Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada 
 Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada 
 Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada 
 Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada; Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada 
Pages
769-782
Section
Original Articles
Publication year
2020
Publication date
May 2020
Publisher
Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins
e-ISSN
2471254X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2396518348
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.