It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multi-layered thin metal film subjected to a short-pulse laser heating is considered. Mathematical description of the process discussed bases on the equation in which there appear the relaxation time and the thermalization time (dual-phase-lag-model). In this study we develop a three level implicit finite difference scheme for numerical modelling of heat transfer in non-homogeneous metal film. At the interfaces an ideal contact between successive layers is assumed. At the stage of computations a solution of only one three-diagonal linear system corresponds to transition from time t to t + Δt. The mathematical model, numerical algorithm and examples of computations are presented in the paper.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer