It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Proteins KaiA, KaiB and KaiC constitute a biochemical circadian oscillator in the cyanobacterium Synechococcus elongatus. It has been reported kaiA inactivation completely abolishes circadian oscillations. However, we show here that kaiBC promoter activity exhibits a damped, low-amplitude oscillation with a period of approximately 24 h in kaiA-inactivated strains. The damped rhythm resonates with external cycles with a period of 24–26 h, indicating that its natural frequency is similar to that of the circadian clock. Double-mutation experiments reveal that kaiC, kaiB, and sasA (encoding a KaiC-binding histidine kinase) are all required for the damped oscillation. Further analysis suggests that the kaiA-less damped transcriptional rhythm requires KaiB-KaiC complex formation and the transcription-translation feedback loop, but not the KaiC phosphorylation cycle. Our results provide insights into mechanisms that could potentially underlie the diurnal/circadian behaviors observed in other bacterial species that possess kaiB and kaiC homologues but lack a kaiA homologue.
Proteins KaiA, KaiB and KaiC constitute a biochemical circadian oscillator in Synechococcus cyanobacteria. Here, Kawamoto et al. show that kaiBC promoter activity exhibits a damped, low-amplitude circadian oscillation in the absence of KaiA, which could explain the circadian rhythms observed in other bacteria that lack a kaiA homologue.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Electrical Engineering and Biological Science, Waseda University, Tokyo, Japan (GRID:grid.5290.e) (ISNI:0000 0004 1936 9975)
2 Faculty of Design, Kyushu University, Fukuoka, Japan (GRID:grid.177174.3) (ISNI:0000 0001 2242 4849)
3 Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan (GRID:grid.262576.2) (ISNI:0000 0000 8863 9909)