Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Parkinson’s disease (PD) is a common age-related neurodegenerative disease. Gait impairment is frequent in the later stages of PD contributing to reduced mobility and quality of life. Digital biomarkers such as gait velocity and step length are predictors of motor and cognitive decline in PD. Additional gait parameters may describe different aspects of gait and motor control in PD. Sample entropy (SampEnt), a measure of signal predictability, is a nonlinear approach that quantifies regularity of a signal. This study investigated SampEnt as a potential biomarker for PD and disease duration. Real-world gait data over a seven-day period were collected using an accelerometer (Axivity AX3, York, UK) placed on the low back and gait metrics extracted. SampEnt was determined for the stride time, with vector length and threshold parameters optimized. People with PD had higher stride time SampEnt compared to older adults, indicating reduced gait regularity. The range of SampEnt increased over 36 months for the PD group, although the mean value did not change. SampEnt was associated with dopaminergic medication dose but not with clinical motor scores. In conclusion, this pilot study indicates that SampEnt from real-world data may be a useful parameter reflecting clinical status although further research is needed involving larger populations.

Details

Title
Entropy of Real-World Gait in Parkinson’s Disease Determined from Wearable Sensors as a Digital Marker of Altered Ambulatory Behavior
Author
Coates, Lucy; Shi, Jian; Rochester, Lynn; Silvia Del Din  VIAFID ORCID Logo  ; Pantall, Annette  VIAFID ORCID Logo 
First page
2631
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2400149827
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.