Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The detection of cherry tomatoes in greenhouse scene is of great significance for robotic harvesting. This paper states a method based on deep learning for cherry tomatoes detection to reduce the influence of illumination, growth difference, and occlusion. In view of such greenhouse operating environment and accuracy of deep learning, Single Shot multi-box Detector (SSD) was selected because of its excellent anti-interference ability and self-taught from datasets. The first step is to build datasets containing various conditions in greenhouse. According to the characteristics of cherry tomatoes, the image samples with illumination change, images rotation and noise enhancement were used to expand the datasets. Then training datasets were used to train and construct network model. To study the effect of base network and the input size of networks, one contrast experiment was designed on different base networks of VGG16, MobileNet, Inception V2 networks, and the other contrast experiment was conducted on changing the network input image size of 300 pixels by 300 pixels, 512 pixels by 512 pixels. Through the analysis of the experimental results, it is found that the Inception V2 network is the best base network with the average precision of 98.85% in greenhouse environment. Compared with other detection methods, this method shows substantial improvement in cherry tomatoes detection.

Details

Title
Robust Cherry Tomatoes Detection Algorithm in Greenhouse Scene Based on SSD
Author
Yuan, Ting; Lin, Lv; Zhang, Fan; Fu, Jun; Gao, Jin; Zhang, Junxiong; Li, Wei; Zhang, Chunlong; Zhang, Wenqiang
First page
160
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403142621
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.