Abstract

Many bacteria can exchange genetic material through horizontal gene transfer (HGT) mediated by plasmids and plasmid-borne transposable elements. Here, we study the population structure and dynamics of over 10,000 bacterial plasmids, by quantifying their genetic similarities and reconstructing a network based on their shared k-mer content. We use a community detection algorithm to assign plasmids into cliques, which correlate with plasmid gene content, bacterial host range, GC content, and existing classifications based on replicon and mobility (MOB) types. Further analysis of plasmid population structure allows us to uncover candidates for yet undescribed replicon genes, and to identify transposable elements as the main drivers of HGT at broad phylogenetic scales. Our work illustrates the potential of network-based analyses of the bacterial ‘mobilome’ and opens up the prospect of a natural, exhaustive classification framework for bacterial plasmids.

Plasmids can mediate the exchange of genetic material between bacterial cells. Here, Acman et al. use network analyses to study the population structure and dynamics of over 10,000 plasmids, assigning them into cliques that correlate with gene content, host range, and existing classifications based on replicon and mobility types.

Details

Title
Large-scale network analysis captures biological features of bacterial plasmids
Author
Acman Mislav 1   VIAFID ORCID Logo  ; van Dorp Lucy 1   VIAFID ORCID Logo  ; Santini, Joanne M 2   VIAFID ORCID Logo  ; Balloux Francois 1   VIAFID ORCID Logo 

 University College London, UCL Genetics Institute, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
 University College London, Institute of Structural and Molecular Biology, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403301548
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.