Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

NOx is emitted in the flue gas from semiconductor manufacturing plants as a byproduct of combustion for abatement of perfluorinated compounds. In order to treat NOx emission, a combined process consisting of a dry plasma process using nonthermal plasma and a wet chemical process using a wet scrubber is performed. For the dry plasma process, a dielectric barrier discharge plasma is applied using a blade-barrier electrode. Two oxidation methods, direct and indirect, are compared in terms of NO oxidation efficiency. For the wet chemical process, sodium sulfide (Na2S) is used as a reducing agent for the NO2. Experiments are conducted by varying the gas flow rate and input power to the plasma reactor, using NO diluted in air to a level of 300 ppm to simulate exhaust gas from semiconductor manufacturing. At flow rates of ≤5 L/min, the indirect oxidation method verified greater removal efficiency than the direct oxidation method, achieving a maximum NO conversion rate of 98% and a NOx removal rate of 83% at 29.4 kV and a flow rate of 3 L/min. These results demonstrate that the proposed combined process consisting of a dry plasma process and wet chemical process is promising for treating NOx emissions from the semiconductor manufacturing industry.

Details

Title
Plasma–Chemical Hybrid NOx Removal in Flue Gas from Semiconductor Manufacturing Industries Using a Blade-Dielectric Barrier-Type Plasma Reactor
Author
Yamasaki, Haruhiko  VIAFID ORCID Logo  ; Koizumi, Yuki; Kuroki, Tomoyuki; Okubo, Masaaki
First page
2717
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403406041
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.