Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the high propulsive efficiency and better maneuverability under high speed, the water-jetted unmanned surface vehicle (USV) is widely studied and used. This paper presents complete maneuvering tests and control algorithm designed for a twin water-jetted USV model. Firstly, a wireless network control platform is established, and maneuvering tests, for instance, an inertia test, zig-zag test and turning test, are carried out to verify the maneuverability of the USV. In light of the complexity and uncertainty of ship sailing and ship handling, the Human Simulated Intelligent Control (HSIC) method is utilized to optimize the response time, accuracy and robustness of the controller. Finally, for the path following and track rectification part, a Line of Sight (LOS) algorithm is improved and proved practicable with triangle/square path tests. The proposed intelligent navigation algorithm specially designed for matching with the control methods, showing satisfactory improvements on the motion control and path following of the specific USV.

Details

Title
Path Following of a Water-Jetted USV Based on Maneuverability Tests
Author
Mou, Junmin; He, Yangying  VIAFID ORCID Logo  ; Zhang, Benren; Li, Shixuan; Xiong, Yong
First page
354
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2405371724
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.