It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started. Asphaltene molecules are incriminated as playing an important role in this phenomenon. Unraveling the mechanisms behind the affinity between them and water is a key step to understand how to break these emulsions more easily and require lower amounts of demulsifiers. Choosing which demulsifier molecule(s) to use is also primordial, but to do so rationally, one needs to know which are the molecular interactions in place between asphaltenes, porphyrins and water so that demulsifiers are chosen to destabilize a specific physical–chemical interaction. In this paper, we study the interactions arising between asphaltenes and porphyrins and six different molecules potentially displaying a demulsification action in the presence of water/oil interfaces. We demonstrate that the ionic demulsifier molecules present an interesting potential to either interact strongly with water, replacing asphaltenes in this interaction, or to interact with the active sites of asphaltenes, deactivating them and avoiding any asphaltenic interfacial activity. Finally, we also found that although asphaltenes do not migrate spontaneously toward the water/oil interfaces, porphyrins do so rather easily. This indicates that porphyrins do have an important activity at the water/oil interface.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 CNRS/Univ Pau & Pays Adour, Institut des Science Analytiques et Physico-Chimie pour l’Environnement et les Materiaux, UMR 5254, Pau, France
2 Total Research and Technology, Gonfreville, Harfleur, France; Total Research and Technology, Gonfreville, Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Harfleur, France
3 CNRS/Univ Pau & Pays Adour, Institut des Science Analytiques et Physico-Chimie pour l’Environnement et les Materiaux, UMR 5254, Pau, France; Total Research and Technology, Gonfreville, Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Harfleur, France