This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
Diabetic kidney disease (DKD) is one of the most common complications of type 2 diabetes, which is the main cause of end-stage renal disease in developed countries. It is characterized by glomerular hypertrophy, basement membrane thickening, and excessive extracellular matrix deposition and ultimately results in glomerulosclerosis and renal interstitial fibrosis. Previous studies have pointed out that the renin-angiotensin system (RAS) is the major mediator of development and progression of DKD [1]. In recent years, more and more reports support the role of chronic inflammation [1, 2], angiogenesis [3, 4], and vascular endothelial dysfunction [5] in the occurrence and development of DKD.
Hypoxia-inducible factor-1α (HIF-1α) is a highly oxygen-sensitive monitor of regulatory protein in the body. A large body of evidence indicates that HIF-1α is a key inflammatory cytokine of renal sclerosis in hyperglycemic conditions [6]. Vascular endothelial growth factor (VEGF) is the most important angiogenesis factor associated with kidney disease [7]. In the kidney, VEGF is mainly produced in the podocyte, and the expression of VEGF is increased at the early stage of DKD, promoting the formation of new blood vessels [8]. Von Willebrand factor (vWf), released from endothelial cells, is a credible biological marker of endothelial cell injury and dysfunction [9, 10]. Insulin-like growth factor-1 (IGF-1) is a potent mitogen for glomerular mesangial cells which can induce cell migration and stimulate the production of proteoglycan, laminin, fibronectin, and type IV collagen, thereby promoting the development of DKD [11]. Vitamin D is obtained from food and from 7-dehydrocholesterol in the skin. Vitamin D attenuates inflammation via inhibiting prostaglandin synthesis and activation and postpones the progress of DKD by inhibiting the activation of some signaling pathways [12].
Although many DKD mechanisms have been proposed, the definitive pathogenesis of DKD remains to be elucidated. Some researches indicate that IGF-1 stimulates the expression of HIF-1α and VEGF through activating the PI3K/Akt/mTOR pathway [13, 14]. Ben-Shoshan et al. [15] have pointed out that 1,25-(OH)2D3 could inhibit the protein expression of HIF-1α by inhibiting transcriptional activity of HIF-1 and its target genes, such as VEGF and endothelin-1 (ET-1), thus delaying the occurrence and development of DKD by reducing angiogenesis and inhibiting cell proliferation. Our study provides relevant information on levels of serum 25(OH)VD3, HIF-1α, VEGF, vWf, and IGF-1 in a large-scale cohort to further understand the law of their changes and to clarify their correlation in type 2 diabetes patients with different urine albumin creatinine ratio.
2. Methods
2.1. Subjects
The study was comprised of 502 type 2 diabetes patients (256 males, 246 females) who firstly attended Inpatient Clinic in the Department of Endocrinology of The First Affiliated Hospital of China Medical University from June 2012 to December 2014. Admission standards are as follows: type 2 diabetes was diagnosed based on the American Diabetes Association 2010 criteria. Exclusion standards are as follows: patients with hepatic diseases, other kidney diseases, hypertension, cardiac diseases, rheumatic diseases, neoplastic diseases, and infectious or other endocrine diseases (except diabetes). Patients who used thiazolidinediones or statins were excluded. Also, patients who used agents that could affect glucose metabolism (except antidiabetes agents) such as glucocorticoid or used agents that could affect urinary albumin excretion rate (ACR) such as ACE inhibitor or angiotensin receptor blocker were excluded. Patients were classified into three groups according to ACR: Normoalbuminuric group (ACR < 30 mg/g, 201 patients), Microalbuminuric group (ACR 30–300 mg/g, 171 patients), and Macroalbuminuric group (ACR > 300 mg/g, 130 patients). Subjects in Normoalbuminuric and Microalbuminuric groups were all newly diagnosed diabetes and diabetic kidney disease patients, respectively. There were many diabetic patients with macroalbuminuria (selected in macroalbuminuria group) who had not started treatment with standardized treatment regimens before coming to our hospital. The patients were selected on a consecutive basis. We did not exclude any eligible patients. According to the admission and exclusion standards, 502 subjects were selected and 496 type 2 diabetes patients were excluded. Additionally, 224 age- and sex-matched healthy volunteers (110 males, 114 females) who took part in the physical examination in our hospital were recruited as a control group. All healthy subjects were selected based on the results of careful history and clinical examinations. In all eligible healthy subjects, we randomly selected 224 people. This study was approved by the Ethics Institutional Review Board of China Medical University. Written consent was obtained from all participants.
2.2. Measurements
In the department of endocrinology, blood samples were obtained from patients in the morning after 12 h of fasting. Medical history and anthropometric measurements were also recorded on the same day. Serum samples were stored at −80°C until final analyses were carried out. The serum factors were measured by commercial sandwich ELISA kits: HIF-1α (product number: KA1247, Abnova, Taiwan, China); VEGF (product number: CSB-E11718h, Cusabio, Wuhan, China); vWf (product number: SU7042, YI HAN BIOLOGY, Shanghai, China); IGF-1 (product number: CSB-E04580h, Cusabio, Wuhan, China). The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), fasting blood glucose (FBG), fasting insulin (FINS), uric acid (UA), serum creatinine (Scr), blood urea nitrogen (BUN), fibrinogen (Fg), and 25-hydroxy vitamin D3 [25(OH)VD3] were detected in the clinical laboratory of The First Affiliated Hospital of China Medical University. Urinary creatinine was measured by automatic picric colorimetry (Beckman, USA). Glycated hemoglobin (HbA1c) level was measured by an automatic glycosylated hemoglobin analyzer (Bio-Rad, USA). Urinary microalbumin was measured by immune turbidimetry (Beckman Coulter, USA) and urine albumin/creatinine ratio (ACR) was calculated; insulin resistance index (HOMA-IR) = FBG × FINS/22.5. Serum creatinine values were used to calculate eGFR with the Modification of Diet in Renal Disease (MDRD) [16]. All the values obtained were in the expected range. Other diabetic complications were not observed in our study.
2.3. Statistical Analysis
The IBM SPSS statistics (V.17.0, IBM Corp., USA, 2008) was used for data analysis. Results were expressed as the mean ± SD for normally distributed values and median (interquartile range) for nonparametric values. Differences between the groups were analyzed by ANOVA, followed by LSD’s test for normally distributed values and by the Kruskal-Wallis test for nonparametric values. Variables were analyzed on natural logarithm, if necessary. Correlation analysis of serum HIF-1α, VEGF, vWf, IGF-1, 25(OH)VD3, age, BMI, Scr, BUN, eGFR, FBG, HbA1c, duration, TC, LDL, TG, HDL, UA, Fg, Ln(ACR), FINS, and HOMA-IR was analyzed by Pearson’s correlation analysis. Relationship between ACR and correlative factors of ACR was analyzed by multivariate stepwise regression analysis and principal component. All
3. Results
3.1. Clinical Characteristics of Type 2 Diabetes Patients and Healthy Controls
Baseline characteristics of the study population are shown in Table 1. There were no significant difference in age, gender, BMI, SBP, DBP, and HDL among the four groups. Duration, FBG, HbA1c, LDL, TC, TG, UA, Scr, BUN, Fg, Ln(ACR), FINS, and HOMA-IR in Normoalbuminuric group, Microalbuminuric group, and Macroalbuminuric group were significantly higher than those in the control group. In patients with type 2 diabetes, duration, HbA1c, TC, TG, UA, Scr, BUN, Fg, and Ln(ACR) in Microalbuminuric group and Macroalbuminuric group were significantly higher than those in Normoalbuminuric group, while eGFR was lower than that in Normoalbuminuric group. The levels of FBG, LDL, TC, TG, UA, Scr, BUN, Fg, Ln(ACR), FINS, and HOMA-IR in Macroalbuminuric group were significantly higher than those in Microalbuminuric group, while eGFR was lower than that in Microalbuminuric group.
Table 1
Clinical characteristics and relative serum factors concentrations of type 2 diabetes patients and healthy controls.
Variable | Control | Normoalbuminuric | Microalbuminuric | Macroalbuminuric |
|
224 (110/114) | 201 (99/102) | 171 (88/83) | 130 (69/61) |
Age (years) | 48.32 ± 12.30 | 49.78 ± 8.02 | 50.48 ± 11.66 | 49.54 ± 10.75 |
Duration (years) | — | 7.71 ± 5.00 |
10.22 ± 6.76 |
10.87 ± 5.21 |
BMI (Kg/m2) | 24.39 ± 2.76 | 24.59 ± 3.03 | 24.94 ± 3.20 | 24.84 ± 2.22 |
FBG (mmol/L) | 5.10 ± 0.33 | 10.12 ± 1.74 |
11.25 ± 2.88 |
10.49 ± 4.15 |
SBP (mmHg) | 124.66 ± 6.10 | 125.46 ± 6.15 | 125.05 ± 6.80 | 125.80 ± 5.93 |
DBP (mmHg) | 74.94 ± 6.21 | 75.77 ± 6.03 | 74.85 ± 6.53 | 76.01 ± 6.15 |
HbA1c (%) | 5.24 ± 0.27 | 8.39 ± 1.67 |
8.75 ± 1.80 |
8.93 ± 2.10 |
HDL (mmol/L) | 1.14 ± 0.20 | 1.10 ± 0.31 | 1.13 ± 0.25 | 1.14 ± 0.27 |
LDL (mmol/L) | 2.54 ± 0.45 | 3.33 ± 0.58 |
3.48 ± 0.91 |
3.67 ± 1.18 |
TC (mmol/L) | 4.01 ± 0.54 | 5.00 ± 0.74 |
5.20 ± 1.10 |
5.62 ± 1.06 |
TG (mmol/L) | 1.21 ± 0.18 | 1.73 ± 0.77 |
2.46 ± 1.48 |
2.85 ± 1.85 |
UA (mmol/L) | 287.14 ± 27.21 | 268.37 ± 73.60 |
301.88 ± 72.42 |
333.34 ± 42.44 |
Scr (μmol/L) | 56.83 ± 9.05 | 59.33 ± 9.62 |
62.69 ± 9.66 |
68.29 ± 10.51 |
BUN (mmol/L) | 4.74 ± 1.03 | 5.02 ± 0.86 |
5.90 ± 0.88 |
6.36 ± 1.01 |
eGFR (mL/min/1.73 m2) | 116.92 (112.86~120.99) | 125.10 (120.72~129.49) |
114.99 (110.64~119.35) |
91.98 (88.53~95.44) |
Fg (g/L) | 2.93 ± 0.77 | 3.13 ± 0.48 |
3.48 ± 1.02 |
3.67 ± 0.31 |
Ln(ACR) | 1.72 ± 0.16 | 2.38 ± 0.45 |
4.19 ± 0.69 |
6.56 ± 0.55 |
FINS (mIU/L) | 6.61 (6.47–6.75) | 9.46 (8.92–10.00) |
10.64 (9.65–11.63) |
9.59 (8.70–10.48) |
HOMA-IR | 1.53 (1.49–6.75) | 4.28 (3.83–4.72) |
5.45 (4.82–6.09) |
4.48 (3.95–5.02) |
HIF-1α (pg/mL) | 16.78 ± 6.73 | 24.38 ± 7.24 |
30.35 ± 4.93 |
33.22 ± 3.89 |
VEGF (pg/mL) | 107.60 ± 28.49 | 130.55 ± 19.48 |
144.34 ± 23.70 |
181.28 ± 21.97 |
vWf (U/L) | 372.62 ± 57.56 | 481.85 ± 62.94 |
598.49 ± 55.26 |
691.63 ± 64.35 |
IGF-1 (ng/mL) | 111.42 ± 49.25 | 149.39 ± 45.10 |
194.50 ± 44.34 |
236.87 ± 46.22 |
25(OH)VD3 (ng/mL) | 17.36 ± 6.23 | 14.86 ± 6.19 |
12.75 ± 5.74 |
10.61 ± 5.04 |
Data are means ± SD for Gaussian variables and median (interquartile range) for non-Gaussian variables.
Note. Normoalbuminuric, Microalbuminuric, and Macroalbuminuric versus Control,
BMI: body mass index; FBG: fasting blood glucose; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; LDL: low-density lipoprotein; TC: cholesterol; TG: triglyceride; UA: uric acid; Scr: serum creatinine; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; Fg: fibrinogen; Ln(ACR): Ln Koc of urinary albumin to creatinine ratio; FINS: fasting insulin; HOMA-IR: HOMA insulin resistance index; HIF-1α: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth factor; vWf: von Willebrand factor; IGF-1: insulin-like growth factor-1; 25(OH)VD3: 25-hydroxy vitamin D3.
3.2. Differences in Serum HIF-1α, VEGF, vWf, IGF-1, and 25(OH)VD3 Levels according to Albuminuria
Table 1 also shows that the serum levels of HIF-1α, VEGF, vWf, and IGF-1 in patients with type 2 diabetes were significantly higher than those in the control group and increased with the increase of Ln(ACR), respectively (
3.3. Relationship between Ln(ACR) and Various Factors
Table 2 shows that Ln(ACR) was positively correlated with duration, HbA1c, Scr, BUN, TC, LDL, TG, UA, HIF-1α, VEGF, IGF-1, Fg, and vWf and negatively correlated with serum 25(OH)VD3 and eGFR (
Table 2
Relationship between Ln(ACR) and various factors.
Variable | Ln(ACR) | |
|
|
|
Duration | 0.256 | <0.001 |
HbA1c | 0.129 | =0.004 |
Scr | 0.326 | <0.001 |
BUN | 0.483 | <0.001 |
eGFR | −0.394 | <0.001 |
TC | 0.256 | <0.001 |
LDL | 0.168 | <0.001 |
TG | 0.280 | <0.001 |
UA | 0.339 | <0.001 |
HIF-1α | 0.525 | <0.001 |
VEGF | 0.715 | <0.001 |
IGF-1 | 0.630 | <0.001 |
25(OH)VD3 | −0.285 | <0.001 |
Fg | 0.294 | <0.001 |
vWf | 0.748 | <0.001 |
HbA1c: glycated hemoglobin; Scr: serum creatinine; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; TC: cholesterol; LDL: low-density lipoprotein; TG: triglyceride; UA: uric acid; HIF-1α: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; 25(OH)VD3: 25-hydroxy vitamin D3; Fg: fibrinogen; vWf: von Willebrand factor.
In Table 3 multiple stepwise regression and principal component regression show that HIF-1α, VEGF, vWf, IGF-1, UA, BUN, duration, eGFR, TG, 25(OH)VD3, and LDL are the main influencing factors of Ln(ACR).
Table 3
Multiple stepwise regression and principal component regression of Ln(ACR) and related factors.
|
Standard error | Standard regression coefficient |
|
|
|
Constant | 1.914 | 0.429 | 4.466 | <0.001 | |
Principal Component | 1.038 | 0.052 | 0.592 | 20.031 | <0.001 |
UA | 0.004 | 0.001 | 0.164 | 6.210 | <0.001 |
BUN | 0.207 | 0.045 | 0.125 | 4.552 | <0.001 |
Duration | 0.027 | 0.008 | 0.091 | 3.572 | <0.001 |
eGFR | −0.008 | 0.004 | −0.139 | −5.356 | <0.001 |
TG | 0.114 | 0.032 | 0.094 | 3.603 | <0.001 |
25(OH)VD3 | −0.017 | 0.007 | −0.058 | −2.292 | =0.022 |
LDL | 0.113 | 0.050 | 0.057 | 2.240 | =0.025 |
Since the values of HIF-1α, VEGF, vWF, and IGF-1 were correlated, their unique principal component was substituted for them in the model and the principal component = 0.803
UA: uric acid; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; TG: triglyceride; 25(OH)VD3: 25-hydroxy vitamin D3; LDL: low-density lipoprotein.
3.4. Correlation with Serum Levels of HIF-1α, VEGF, vWf, IGF-1, and 25(OH)VD3 according to Different Urinary Albumin Excretion Rates and Its Correlation with Related Factors
Tables 4 and 5 show that HIF-1α, VEGF, IGF-1, and vWf were positively correlated with Scr (
Table 4
Correlation with serum levels of HIF-1α, VEGF, vWf, IGF-1, and 25(OH)VD3.
Variable | HIF-1α | VEGF | IGF-1 | 25(OH)VD3 | vWf | |||||
|
|
|
|
|
|
|
|
|
|
|
HIF-1α | — | — | 0.492 | <0.001 | 0.717 | <0.001 | −0.228 | <0.001 | 0.463 | <0.001 |
VEGF | 0.492 | <0.001 | — | — | 0.823 | <0.001 | −0.243 | <0.001 | 0.519 | <0.001 |
IGF-1 | 0.717 | <0.001 | 0.823 | <0.001 | — | — | −0.238 | <0.001 | 0.504 | <0.001 |
25(OH)VD3 | −0.228 | <0.001 | −0.243 | <0.001 | −0.238 | <0.001 | — | — | −0.219 | <0.001 |
vWf | 0.463 | <0.001 | 0.519 | <0.001 | 0.504 | <0.001 | −0.219 | <0.001 | — | — |
HIF-1α: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; 25(OH)VD3: 25-hydroxy vitamin D3; vWf: von Willebrand factor.
Table 5
Relationship between serum levels of HIF-1α, VEGF, vWF, IGF-1, and 25(OH)VD3 and various factors.
Variable | HIF-1α | VEGF | IGF-1 | 25(OH)VD3 | vWf | |||||
r | P | r | P | r | P | r | P | r | P | |
Duration | 0.113 | =0.011 | 0.123 | =0.006 | 0.136 | =0.002 | −0.097 | =0.031 | 0.027 | <0.001 |
FBG | 0.098 | =0.028 | 0.024 | =0.590 | 0.103 | =0.021 | −0.047 | =0.298 | 0.092 | =0.039 |
HbA1c | 0.010 | =0.824 | 0.091 | =0.040 | 0.063 | =0.156 | −0.016 | =0.716 | 0.081 | =0.069 |
HDL | 0.090 | =0.043 | −0.019 | =0.672 | 0.012 | =0.794 | −0.008 | =0.857 | 0.040 | =0.377 |
LDL | 0.111 | =0.013 | 0.151 | =0.001 | 0.131 | =0.003 | −0.016 | =0.726 | 0.142 | =0.001 |
TC | 0.143 | =0.001 | 0.248 | <0.001 | 0.223 | <0.001 | −0.038 | =0.400 | 0.190 | <0.001 |
TG | 0.051 | =0.254 | 0.084 | =0.060 | 0.105 | =0.019 | −0.084 | =0.060 | 0.293 | <0.001 |
UA | 0.038 | =0.402 | 0.201 | <0.001 | 0.180 | <0.001 | −0.069 | =0.123 | 0.280 | <0.001 |
Scr | 0.174 | <0.001 | 0.253 | <0.001 | 0.207 | <0.001 | −0.103 | =0.020 | 0.266 | <0.001 |
BUN | 0.328 | <0.001 | 0.367 | <0.001 | 0.364 | <0.001 | −0.153 | =0.001 | 0.426 | <0.001 |
eGFR | −0.194 | <0.001 | −0.307 | <0.001 | −0.246 | <0.001 | 0.101 | 0.024 | −0.322 | <0.001 |
Fg | 0.278 | <0.001 | 0.239 | <0.001 | 0.272 | <0.001 | −0.067 | =0.131 | 0.248 | <0.001 |
Ln(ACR) | 0.525 | <0.001 | 0.715 | <0.001 | 0.630 | <0.001 | −0.285 | <0.001 | 0.748 | <0.001 |
FINS | 0.137 | =0.002 | −0.087 | =0.051 | −0.105 | =0.019 | −0.018 | =0.689 | 0.036 | =0.415 |
HOMA-IR | −0.038 | =0.394 | −0.058 | =0.193 | −0.152 | =0.001 | −0.004 | =0.929 | 0.072 | =0.109 |
FBG: fasting blood glucose; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; LDL: low-density lipoprotein; TC: cholesterol; TG: triglyceride; UA: uric acid; Scr: serum creatinine; BUN: blood urea nitrogen; eGFR: estimated glomerular filtration rate; Fg: fibrinogen; Ln(ACR): Ln Koc of urinary albumin to creatinine ratio; FINS: fasting insulin; HOMA-IR: HOMA insulin resistance index; HIF-1α: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; 25(OH)VD3: 25-hydroxy vitamin D3; vWf: von Willebrand factor.
4. Discussion
Studies have suggested that chronic inflammation, angiogenesis, and vascular endothelial dysfunction play important roles in the occurrence and development of DKD. Our research was a large-scale cohort designed to investigate the importance of serum 25(OH)VD3, HIF-1α, VEGF, vWf, and IGF-1 in DKD pathogenesis.
Results showed that, compared with the control group, serum levels of HIF-1α, VEGF, and vWf were significantly elevated in patients with type 2 diabetes and increased as urinary protein increased. Correlation analysis showed that serum HIF-1α, VEGF, and vWf were positively correlated with Ln(ACR), Scr, and BUN, respectively. Principal component regression analysis also pointed out that these serum factors are the important factors associated with the increase in Ln(ACR). This may suggest that serum HIF-1α, VEGF, and vWf were independent factors associated with DKD.
In hyperglycemic conditions, both protein and mRNA of HIF-1α increased significantly in mesangial cell [17]. Under normal oxygen conditions, advanced glycation end-products could increase the transcriptional activity of HIF-1α by adjusting the mitogen activated protein kinase [18]. Additionally, it was confirmed that HIF-1α promotes renal fibrosis through activating angiotensin II in vivo and in vitro experiments [19].
Abnormal angiogenesis causes the formation of immature blood vessels, which leads to renal fibrosis and eventually results in the loss of glomerular function in DKD. Both the increased VEGF expression and the decreased endothelial nitric oxide synthase expression promote abnormal blood vessel formation in DKD [3]. Expression of VEGF increases the activation of the PI3K/AKT signaling pathway, resulting in phosphorylation of endothelial nitric oxide synthase and angiogenesis, which promotes the process of DKD.
Serum vWf level is closely correlated with endothelial cell injury. Verrotti et al. [20] have confirmed that endothelial dysfunction and the occurrence of microalbuminuria are closely related in DKD. Endothelial injury is one of the characteristics of DKD, even in the subclinical stage of the disease. High glucose produces peroxides and activates endothelial cell nitric oxide synthase, protein kinase C (PKC), and nuclear factor-
Previous studies have pointed out that IGF-1 may play a role in these serum factors in other diseases [24]. Our study found that there were positive correlations between serum IGF-1, HIF-1α, VEGF, and vWf, so we speculated that serum IGF-1 may be involved in the occurrence and development of DKD through inflammation, abnormal angiogenesis, and vascular endothelial dysfunction.
Activation of the growth hormone GH/IGF-1 axis has a direct relationship with renal hypertension, proteinuria, and glomerular sclerosis, all of which play key roles in early lesions of DKD. IGF-1 causes renal hypertrophy and alters renal hemodynamics through overexpressing VEGF, promoting oxidative stress and high coagulation state. Elevated levels of IGF-1 in DKD are associated with elevated levels of collagen type IV (collagen IV) and laminin which jointly promote the occurrence and development of DKD [25]. Catrina et al. [26] also confirmed that IGF-1 increases the level of HIF-1 by improving the alpha subunit at the level of translation.
Previous studies have pointed out that vitamin D may play a protective role in DKD. Our study found that serum 25(OH)VD3 was negatively correlated with HIF-1α, VEGF, and vWf, which indicates that vitamin D reduces proteinuria and delays the progression of DKD maybe partly through inhibiting inflammation, abnormal angiogenesis, and vascular endothelial dysfunction.
Plum and Zella [27] speculated that a lack of vitamin D may be an independent risk factor for proteinuria. After adequate vitamin D treatment, urine protein decreased significantly, and fibrosis cytokines, such as TGF-β1 and Smad3, were also significantly decreased, suggesting that treatment with vitamin D could significantly delay the process of DKD. Mao et al. [12] confirmed that serum vitamin D levels were negatively related to inflammatory cytokines in the urine, such as TNF-α, interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1). Ren et al. [28] suggested that 1,25-(OH)2D3 may exert its therapeutic effect in diabetic retinopathy by inhibiting the VEGF/TGF-β pathway. Similarly, Yildirim et al. [29] also confirmed that 1,25-(OH)2D3 could downregulate the protein expression of VEGF, thereby reducing angiogenesis and inflammation. Compared to DKD patients with normal vitamin D levels, those with vitamin D deficiency have decreased microvascular endothelial function [30]. Vascular endothelial injury leads to adhesion and activation of inflammatory cytokines, which may increase the expression of vWf and further promote DKD process.
Principal component regression analysis also pointed out that TG, UA, and LDL were independent factors associated with DKD. Sustained high glucose leads to systemic vascular endothelial damage, disorder of lipoprotein, and increased TG level. Abnormal blood lipid also promotes the occurrence and development of DKD [31]. UA promotes DKD via renal tubular interstitial injury [32].
Our study has certain limitations. First, it was a cross-sectional study without follow-up and therefore the significance of the changes of serum HIF-1α, VEGF, vWf, IGF-1, and 25(OH)VD3 as well as the development of DKD remains unknown. Second, our study observed a correlation between serum HIF-1α, VEGF, vWf, IGF-1, and 25(OH)VD3 in DKD, but not the modulating mechanism.
In conclusion, increased serum HIF-1α, VEGF, vWf, and IGF-1 and decreased serum 25(OH)VD3 may have an association with diabetic renal damage in type 2 diabetes patients. Serum HIF-1α, VEGF, vWf, and IGF-1 may interact with and promote each other and play important roles in the occurrence and development of DKD. Additionally, the protective effect of vitamin D in DKD may be realized by inhibiting inflammation, abnormal angiogenesis, and vascular endothelial dysfunction.
Acknowledgments
This research was financed by “Liaoning BaiQian Wan Talents Program” (2011921037, Liaoning, China); Magnitude Science and Technology Projects of Liaoning Province (2011225017, Liaoning, China); Shenyang Science and Technology Grant (F11-262-9-06, Shenyang, China); “High-End Talent Team Construction” in Liaoning (
[1] Q.-Y. Wang, Q.-H. Guan, F.-Q. Chen, "The changes of platelet-derived growth factor-BB (PDGF-BB) in T2DM and its clinical significance for early diagnosis of diabetic nephropathy," Diabetes Research and Clinical Practice, vol. 85 no. 2, pp. 166-170, DOI: 10.1016/j.diabres.2009.05.008, 2009.
[2] C. Wu, Q. Wang, C. Lv, N. Qin, S. Lei, Q. Yuan, G. Wang, "The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin," Diabetes Research and Clinical Practice, vol. 106 no. 2, pp. 343-350, DOI: 10.1016/j.diabres.2014.08.026, 2014.
[3] T. Nakagawa, W. Sato, T. Kosugi, R. J. Johnson, "Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy," Journal of Diabetes Research, vol. 2013,DOI: 10.1155/2013/184539, 2013.
[4] P. Z. Costa, R. Soares, "Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox," Life Sciences, vol. 92 no. 22, pp. 1037-1045, DOI: 10.1016/j.lfs.2013.04.001, 2013.
[5] H. Cheng, R. C. Harris, "Renal endothelial dysfunction in diabetic nephropathy," Cardiovascular and Hematological Disorders—Drug Targets, vol. 14 no. 1, pp. 22-33, DOI: 10.2174/1871529x14666140401110841, 2014.
[6] K. Matoba, D. Kawanami, R. Okada, M. Tsukamoto, J. Kinoshita, T. Ito, S. Ishizawa, Y. Kanazawa, T. Yokota, N. Murai, S. Matsufuji, J. Takahashi-Fujigasaki, K. Utsunomiya, "Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1 α," Kidney International, vol. 84 no. 3, pp. 545-554, DOI: 10.1038/ki.2013.130, 2013.
[7] C. C. Khoury, F. N. Ziyadeh, "Angiogenic factors," Contributions to Nephrology, vol. 170, pp. 83-92, DOI: 10.1159/000324950, 2011.
[8] T. Eleftheriadis, G. Antoniadi, G. Pissas, V. Liakopoulos, I. Stefanidis, "The renal endothelium in diabetic nephropathy," Renal Failure, vol. 35 no. 4, pp. 592-599, DOI: 10.3109/0886022x.2013.773836, 2013.
[9] R. B. Goldberg, "Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications," The Journal of Clinical Endocrinology & Metabolism, vol. 94 no. 9, pp. 3171-3182, DOI: 10.1210/jc.2008-2534, 2009.
[10] F. Persson, P. Rossing, P. Hovind, C. D. A. Stehouwer, C. G. Schalkwijk, L. Tarnow, H.-H. Parving, "Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria (IRMA 2) study," Scandinavian Journal of Clinical and Laboratory Investigation, vol. 68 no. 8, pp. 731-738, DOI: 10.1080/00365510802187226, 2008.
[11] P. Kamenický, G. Mazziotti, M. Lombès, A. Giustina, P. Chanson, "Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications," Endocrine Reviews, vol. 35 no. 2, pp. 234-281, DOI: 10.1210/er.2013-1071, 2014.
[12] L. Mao, F. Ji, Y. Liu, W. Zhang, X. Ma, "Calcitriol plays a protective role in diabetic nephropathy through anti-inflammatory effects," International Journal of Clinical and Experimental Medicine, vol. 7 no. 12, pp. 5437-5444, 2014.
[13] F. Jiang, Y.-T. Tang, L. Guo, X.-Y. Jiao, "The role of insulin-like growth factor I and hypoxia inducible factor 1 α in vascular endothelial growth factor expression in type 2 diabetes," Annals of Clinical and Laboratory Science, vol. 43 no. 1, pp. 37-44, 2013.
[14] D. H. Yu, K. A. MacE, S. L. Hansen, N. Boudreau, D. M. Young, "Effects of decreased insulin-like growth factor-1 stimulation on hypoxia inducible factor 1- α protein synthesis and function during cutaneous repair in diabetic mice," Wound Repair and Regeneration, vol. 15 no. 5, pp. 628-635, DOI: 10.1111/j.1524-475x.2007.00274.x, 2007.
[15] M. Ben-Shoshan, S. Amir, D. T. Dang, L. H. Dang, Y. Weisman, N. J. Mabjeesh, "1 α ,25-Dihydroxyvitamin D 3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells," Molecular Cancer Therapeutics, vol. 6 no. 4, pp. 1433-1439, DOI: 10.1158/1535-7163.mct-06-0677, 2007.
[16] S. S. Kim, S. H. Song, I. J. Kim, J. Y. Yang, J. G. Lee, I. S. Kwak, Y. K. Kim, "Clinical implication of urinary tubular markers in the early stage of nephropathy with type 2 diabetic patients," Diabetes Research and Clinical Practice, vol. 97 no. 2, pp. 251-257, DOI: 10.1016/j.diabres.2012.02.019, 2012.
[17] T. Isoe, Y. Makino, K. Mizumoto, H. Sakagami, Y. Fujita, J. Honjo, Y. Takiyama, H. Itoh, M. Haneda, "High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein," Kidney International, vol. 78 no. 1, pp. 48-59, DOI: 10.1038/ki.2010.99, 2010.
[18] T. Bondeva, J. Heinzig, C. Ruhe, G. Wolf, "Advanced glycated end-products affect HIF-transcriptional activity in renal cells," Molecular Endocrinology, vol. 27 no. 11, pp. 1918-1933, DOI: 10.1210/me.2013-1036, 2013.
[19] L. Tang, R. Yi, B. Yang, H. Li, H. Chen, Z. Liu, "Valsartan inhibited HIF-1 α pathway and attenuated renal interstitial fibrosis in streptozotocin-diabetic rats," Diabetes Research and Clinical Practice, vol. 97 no. 1, pp. 125-131, DOI: 10.1016/j.diabres.2012.01.037, 2012.
[20] A. Verrotti, R. Greco, F. Basciani, G. Morgese, F. Chiarelli, "Von Willebrand factor and its propeptide in children with diabetes. Relation between endothelial dysfunction and microalbuminuria," Pediatric Research, vol. 53 no. 3, pp. 382-386, DOI: 10.1203/01.pdr.0000049509.65496.bf, 2003.
[21] M. Yngen, C.-G. Östenson, P. Hjemdahl, N. H. Wallén, "Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide," Diabetic Medicine, vol. 23 no. 2, pp. 134-140, DOI: 10.1111/j.1464-5491.2005.01765.x, 2006.
[22] N. G. Cruz, L. P. Sousa, M. O. Sousa, N. T. Pietrani, A. P. Fernandes, K. B. Gomes, "The linkage between inflammation and Type 2 diabetes mellitus," Diabetes Research and Clinical Practice, vol. 99 no. 2, pp. 85-92, DOI: 10.1016/j.diabres.2012.09.003, 2013.
[23] M. Jazayeri, A. Allameh, M. Soleimani, S. H. Jazayeri, A. Piryaei, S. Kazemnejad, "Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells," Cell Biology International, vol. 32 no. 10, pp. 1183-1192, DOI: 10.1016/j.cellbi.2008.07.020, 2008.
[24] V. Poulaki, A. M. Joussen, N. Mitsiades, C. S. Mitsiades, E. F. Iliaki, A. P. Adamis, "Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy," The American Journal of Pathology, vol. 165 no. 2, pp. 457-469, DOI: 10.1016/s0002-9440(10)63311-1, 2004.
[25] L. Ji, X.-X. Yin, Z.-M. Wu, J.-Y. Wang, Q. Lu, Y.-Y. Gao, "Ginkgo biloba extract prevents glucose-induced accumulation of ECM in rat mesangial cells," Phytotherapy Research, vol. 23 no. 4, pp. 477-485, DOI: 10.1002/ptr.2652, 2009.
[26] S.-B. Catrina, I. R. Botusan, A. Rantanen, A. I. Catrina, P. Pyakurel, O. Savu, M. Axelson, P. Biberfeld, L. Poellinger, K. Brismar, "Hypoxia-inducible factor-1 α and hypoxia-inducible factor-2 α are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I," Clinical Cancer Research, vol. 12 no. 15, pp. 4506-4514, DOI: 10.1158/1078-0432.ccr-05-2473, 2006.
[27] L. A. Plum, J. B. Zella, "Vitamin D compounds and diabetic nephropathy," Archives of Biochemistry and Biophysics, vol. 523 no. 1, pp. 87-94, DOI: 10.1016/j.abb.2012.02.008, 2012.
[28] Z. Ren, W. Li, Q. Zhao, L. Ma, J. Zhu, "The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor- β 1 in the retinas of rats with diabetes," Diabetes Research and Clinical Practice, vol. 98 no. 3, pp. 474-480, DOI: 10.1016/j.diabres.2012.09.028, 2012.
[29] B. Yildirim, T. Guler, M. Akbulut, O. Oztekin, G. Sariiz, "1-alpha, 25-dihydroxyvitamin D3 regresses endometriotic implants in rats by inhibiting neovascularization and altering regulation of matrix metalloproteinase," Postgraduate Medicine, vol. 126 no. 1, pp. 104-110, DOI: 10.3810/pgm.2014.01.2730, 2014.
[30] S. Munisamy, M. D. Kamaliah, A. H. Suhaidarwani, W. M. Zahiruddin, A. H. Rasool, "Impaired microvascular endothelial function in vitamin D-deficient diabetic nephropathy patients," Journal of Cardiovascular Medicine, vol. 14 no. 6, pp. 466-471, DOI: 10.2459/JCM.0b013e3283590d3d, 2013.
[31] T. Hirano, "Abnormal lipoprotein metabolism in diabetic nephropathy," Clinical and Experimental Nephrology, vol. 18 no. 2, pp. 206-209, DOI: 10.1007/s10157-013-0880-y, 2014.
[32] P. Bjornstad, M. A. Lanaspa, T. Ishimoto, T. Kosugi, S. Kume, D. Jalal, D. M. Maahs, J. K. Snell-Bergeon, R. J. Johnson, T. Nakagawa, "Fructose and uric acid in diabetic nephropathy," Diabetologia, vol. 58 no. 9, pp. 1993-2002, DOI: 10.1007/s00125-015-3650-4, 2015.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2016 Ying Shao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Objective. To investigate changes in serum 25(OH)VD3, HIF-1α, VEGF, vWf, IGF-1, and their correlation in type 2 diabetes patients at different stages of diabetic kidney disease (DKD). Methods. 502 type 2 diabetes patients were divided into three groups: Normoalbuminuric group (201 patients), Microalbuminuric group (171 patients), and Macroalbuminuric group (130 patients). Serum 25-hydroxyvitamin D3 [25(OH)VD3] was measured by chemiluminescence. Serum hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), von Willebrand factor (vWf), and insulin-like growth factor-1 (IGF-1) were determined by enzyme-linked immunosorbent assay. We detected the aforementioned serum factors in all cases and 224 control subjects. Results. Serum HIF-1α, VEGF, vWf, and IGF-1 in type 2 diabetes patients were significantly higher than those in the control group and increased with the increase of Ln(ACR), respectively (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Endocrinology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China