This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
Exposure to stressful environmental events during early childhood may impact neural plasticity and increase the vulnerability to psychopathologies [1]. The early life stress causes neuroendocrine changes associated with social and emotional behavior alterations [2] that may persist throughout life [3]. In humans, especially from the prenatal period until the early years of postnatal life, the brain undergoes a rapid development [4] and is highly sensitive to the influence of positive and negative external experiences [5].
An example of early childhood stress is the maternal separation; in humans, it can be related to institutionalization in orphanages [6], which has already been shown to be responsible for long-term behavioral damages, such as increased anxiety [7], and psychopathologies, as schizophrenia [8]. Several reports suggest that early childhood traumas may affect distinct neural circuits, such as those involving the dopaminergic and the noradrenergic systems [9–13], which perform several functions in the brain, including the regulation of cognition, attention, and stress [12, 14–17]. In addition, neuroimaging studies in humans suggest that early childhood stress interferes in the maturation of the dopaminergic system [18].
In rodents, maternal deprivation (MD) is a stress model widely used as a paradigm to study early life adverse events [19], as parental abuse or loss [11]. In this model, there is evidence that early-stage stress leads to changes in dopamine neurotransmission, affecting both dopamine (DA) levels [20] and dopaminergic receptor density (D1 and D2) [18]. In addition to interactions with the dopaminergic system, evidences suggest that early childhood stress also changes noradrenergic neural networks such as the locus-coeruleus-norepinephrine (NE) system [21, 22].
In contrast, some strategies have been used to improve brain DA and/or NE levels, as well as cognitive functions. One is the physical exercise. Chronic aerobic exercise effects on cognition are widely studied [23, 24], and researches demonstrated that exercise improves behavioral, mental health [25, 26] and biochemical parameters [23, 27, 28]. Despite other mechanisms involved on the aerobic exercise effects, it acts by exciting the central nervous system through positive regulation of catecholamines, including epinephrine (E), NE, and DA [29–32]. Furthermore, a previous study from our laboratory demonstrated that a single exercise session is able to promote object recognition memory persistence, which is related to the increase of NE levels [33].
Thus, in the present work, we aim to investigate the effects of a single aerobic exercise session on memory deficits related to MD in rats. Additionally, we investigated the impact of MD and a single aerobic exercise session on hippocampal DA and NE levels.
2. Materials and Methods
2.1. Animals and Experimental Design
Pregnant female Wistar rats were obtained from the Central Vivarium of the Federal University of Santa Maria (RS/Brazil). All animals were kept in a light/dark cycle of 12 h (7:00 a.m. to 7:00 p.m.) at controlled ambient temperature (
The delivery day was considered as day zero. From the postnatal day 1 (PND-1) to the PDN-10, the MD protocol was performed with half of the pups, as described below. The animals were weaned in PND-21 and housed 5 per cage. Only males were used in the experiments described in this paper. All experiments were performed according to the principles of laboratory animal care (NIH Publication No. 80-23, revised 1996) and approved by the Institutional Committee on Animal Care and Use of the Federal University of Pampa (RS/Brazil) (050/2017).
The rats were divided into six groups, according the procedures adopted, which are described below.
(i)
NMD. Control rats were not submitted to the MD protocol but were trained in the object recognition memory (OR) task (
(ii)
MD. The rats were submitted to the MD protocol and were trained in the OR task (
(iii)
NMD+FAE. The rats were not submitted to the MD protocol, were familiarized to the exercise apparatus (a treadmill for rodents), and were trained in the OR task, without the exercise shot after OR training (
(iv)
MD+FAE. The rats were submitted to the MD protocol, were familiarized to the exercise apparatus, and were trained in the OR task, without the exercise shot after OR training (
(v)
NMD+AE. The rats were not submitted to the MD protocol, were familiarized to the exercise apparatus, were trained in the OR task, and were submitted to an aerobic physical exercise shot immediately after (
(vi)
MD+AE. The rats were submitted to the MD protocol, were familiarized to the exercise apparatus, were trained in the OR, and were submitted to an aerobic physical exercise shot immediately after OR training (
After, ten rats from each group were submitted to OR memory testing 24 h and 7, 14, and 21 days after OR training (Figure 1). In all testing days, the Elevated Plus Maze task was performed after OR testing, as an anxiety control test. Five animals from each group were euthanized immediately after the exercise shot, their brains were isolated, and the hippocampi were quickly dissected for use in biochemical tests. For biochemical tests, additional naïve rats were used (
2.2. Maternal Deprivation
Female Wistar rats were kept in individual boxes until the delivery day (day 0). The rats of groups ii, iv, and vi were submitted to maternal deprivation (MD) for 10 days (PND-1 to PND-10), 3 hours/day, always during the light part of the light/dark cycle.
The MD protocol consisted in removing the mother from the residence box to another room, without touching the puppies. Pups were kept in their cage, and while the mothers were absent, the room temperature was maintained at around 32°C to compensate the loss of the mother’s body heat [34]. At the end of each daily deprivation session, the mothers were returned to their original boxes.
The rats of groups i, iii, and v remained in their residence boxes with their mothers until PND-21. On PND-21, all rats were weaned, and males were kept in groups of 5 in plastic boxes, similar to all other animals in our accommodation facility. The female pups were donned to other experiments. This specific MD protocol was selected since in previous studies no changes in anxiety or other behavioral parameters that could interfere with the memory testing were found [34–36].
2.3. Familiarization with the Exercise Apparatus
Prior to the memory task, rats were familiarized with the treadmill where the physical exercise would be performed to avoid novelty and/or stress effects. Initially, the rats were familiarized with the treadmill for three days (first day static and then with treadmill at a speed of 2 to 5 m/min for 10 min).
Afterwards, they were submitted to the “good runner protocol,” which consists in placing the animals on a treadmill without slope for three consecutive days (velocity of 8 m/min for 10 min) and then assessing the level of trainability, considering a scale from 1 to 5 points (1: refuses to run; 2: runners below average (runs and stops or runs in the wrong direction); 3: average runner; and 4: above average (runs well), with sporadic stops on the treadmill); in the end, rats that maintained a mean of three or more points were included in the exercise groups [37].
On the last day, an indirect VO2 maximum test was performed to determine individual exercise intensity (starting at a slow rate increased by 5 m/min every 3 minutes until the rat could not continue to run) [38, 39].
2.4. Habituation and Training in the Object Recognition Memory Task
The object recognition (OR) training and tests were performed in an arena (
2.5. Aerobic Exercise Shot
Animals from groups v and vi were submitted to a single physical exercise session immediately after the OR training, using a treadmill built for rodents (Insight Ltda., São Paulo, Brazil). The protocol used was adapted from Malek et al. [41]; an intensity of 60-70% of maximum oxygen consumption (VO2) in a single session for 30 min was used.
2.6. Object Recognition Memory Tests
Twenty-four hours and 7, 14, and 21 days after training, in the memory testing phase, one of the objects used in OR training was maintained (Familiar object—F) and the other was randomly replaced by a new one (N). In each test day, the objects were placed in the apparatus and the animals were free to explore them for 5 min. The test sessions were recorded, and after, the time exploring each object was accounted.
2.7. Elevated Plus Maze (EPM) Test
To assess the anxiety state, which could affect the results of memory tests, the rats were exposed to EPM in each testing days, always after the OR test. The EPM apparatus consists of a raised platform, located 60 cm above the ground, and has two closed arms face to face and two open arms, each measuring
2.8. Biochemical Testing
Five rats from groups i to vi were sacrificed immediately after the single session of aerobic exercise or in the equivalent time. Additionally, 4 naïve groups were sacrificed. The rats’ brains were quickly removed for dissection of the bilateral hippocampus. The tissues were homogenized in 50 mM HCl, pH 7.4 (1/5,
The levels of DA and NE in hippocampus homogenates were determined using an “Inertsil ODS-3” reverse-phase High Performance Liquid Chromatography (HPLC) system (5 μ
To separate DA and NE, we used the isocratic programming with a flow rate of 0.8 mL/min. The sample was filtered through 0.22 μm syringe filters. We inject 20 μL of samples into the HPLC system by an automatic sampling device (YL9150). Detection was at 198 nm by DAD. Chromatograms were recorded and integrated by PC integration software (YLClarity). All analyses were performed in triplicate. Analytical parameters were as follows: linear range, 0.1-10.0 μg/mL; coefficient of determination, 0.999; and calibration equation,
2.9. Statistical Analyses
The data distribution was analyzed using the Shapiro-Wilk test.
The exploration time of the objects in the OR task was converted to a percentage of the total exploration time on the training or test sessions, and the Wilcoxon signed-rank test was used to compare the percentage of the total exploration time spent in each object considering a theoretical mean of 50%.
The EPM data were compared by the Kruskal-Wallis test.
The HPLC results and total exploration time in each OR session were compared by ANOVA, followed by Tukey’s multiple comparison tests.
The results are expressed as the
3. Results
3.1. Object Recognition Memory Consolidation and Persistence
Memory consolidation and persistence were assessed by the OR test. During OR training, the rats from all groups explored the two objects by a similar percentage of total exploration time, ~50% of the total exploration time each one (
[figures omitted; refer to PDF]
In the 24 h test, the control group (NMD) explored significantly more than 50% of the new object (
As expected, MD rats did not consolidate memory. On the 24 h test, they explored ~50% of the total exploration time each object (
Nondeprived rats (NMD) familiarized to the exercise apparatus (NMD+FAE) explored more than ~50% of the new object in comparison to the familiar one in the 24 h test (
The MD rats familiarized to the exercise apparatus (MD+FAE) explored significantly more than 50% of the new object in the 24 h test (
Nondeprived rats who performed aerobic exercise on the treadmill (NMD+AE) explored significantly more than ~50% of the new object in the 24 h test (
The maternal-deprived rats submitted to physical exercise shot (MD+AE) presented a good memory consolidation, since they explored the new object for more than 50% of the total exploration time in the 24 h test (
It is importantly highlighted that despite the differences between groups in the percent of time spent exploring the new and the familiar objects in some testing sessions, no differences in the total exploration time were found between the groups in any OR session (Table 1).
Table 1
Total exploration time in training and tests on the OR task. Data are expressed as the
NMD | MD | NMD+FAE | MD+FAE | NMD+AE | MD+AE | ||
Training (s) | 0.1695 | ||||||
Test (24 h) | 0.1066 | ||||||
Test (7 d) | 0.0539 | ||||||
Test (14 d) | 0.0868 | ||||||
Test (21 d) | 0.0635 |
3.2. Elevated Plus Maze
MD and aerobic physical exercise protocol did not alter the anxiety of the animals in the testing session performed 24 h and 7, 14, and 21 days after training (Table 2).
Table 2
Maternal deprivation and physical exercise do not alter the anxiety of the animals. Data are expressed as the
MD | NMD | MD+AE | NMD+AE | MD+FAE | NMD+FAE | ||
24 h | |||||||
Time in open arms | 0.75 | ||||||
Total of entries | 0.10 | ||||||
7 days | |||||||
Time in open arms | 0.21 | ||||||
Total of entries | 0.57 | ||||||
14 days | |||||||
Time in open arms | 0.35 | ||||||
Total of entries | 0.90 | ||||||
21 days | |||||||
Time in open arms | 0.95 | ||||||
Total of entries | 0.20 |
3.3. Catecholamine Levels
No differences were found between groups on hippocampal dopamine levels (
[figures omitted; refer to PDF]
4. Discussion
It is well established that the exposure to stress in the postnatal period can trigger numerous effects on neuroplasticity, cognitive function, and behavior in adulthood [44], since the postnatal period is critical for the central nervous system development [4]. In this sense, strategies that seek to minimize and/or reverse cognitive damages related to this type of stress are important. Here, we investigate the effects of an aerobic exercise (AE) shot on the consolidation and persistence of object recognition (OR) memory in a MD rat model. Our results showed that a single shot of exercise is able to modulate learning, promoting the acquisition of memory in MD rats, as well as the persistence of this memory up to 21 days. Additionally, the session of AE is able to improve the memory of NMD rats, since the memory persists for more time in these rats than in the ones that do not performed exercise. Still, the simple previous familiarization to the physical exercise apparatus to OR training promoted an improvement on learning.
Our results show that control animals (NMD) do not present memory persistence beyond 24 hours. It is importantly emphasized that it was expected, since this type of memory trace generally is susceptible to physiological decay [33]. On the other hand, MD rats are not able to learn, as previously demonstrated [34, 36, 45]. Aerobic exercise (AE) was able to revert MD memory deficits, and MD+AE rats present better results than the NMD group in 7, 14, and 21 days because in control (NMD) rats, i.e., normal rats that were not submitted to any procedure despite the memory task, the OR memory trace normally decays along time. A single session of acute exercise, on the other hand, is aimed at modulating OR memory consolidation, and, as in NMD animals submitted to exercise, the MD animals that performed exercise had an improvement in consolidation with consequent improvement in the persistence of this memory. These results are associated with the changes in brain activity after exercise [33], showing that improved memory consolidation may result in improved memory persistence [46]. This explains why MD+AE animals show better memory than the NMD+FAE group, since these animals were not submitted to exercise after learning; so, memory consolidation was not modulated, and these animals show memory consolidation but did not show the same memory persistence (NMD+FAE). On the other hand, the MD+AE animals were the only that presented memory persistence until 21 days. Initially, we are expecting that the NMD+AE also presented this effect on memory, but it was not observed. We hypothesized that the brain changes induced by MD may make the brain of these animals more susceptible to changes after external influences, such as the practice of an exercise session [1]. One possible explanation to this result is that the neural changes induced by MD [1] may make the brain of these animals more susceptible to external influences along life or make them respond in a different way; so, factors as the practice of an exercise session could impact in a more expressive way the MD animals than control (NMD) ones.
Physical exercise is a noninvasive and easy alternative to influence the cognitive functions. Previous studies of our laboratory demonstrated that chronic aerobic exercise minimizes mnemonic deficits in animal models of neurodegenerative diseases [24, 36, 47], which have been related to antioxidant and anti-inflammatory exercise effects [23, 27], besides the exercise influence on neuroplasticity [28]. However, acute aerobic exercise is still studied little as a neuroprotective strategy [48].
In a recent study, we demonstrated that normal rats submitted to one acute aerobic exercise session (30 minutes) after the OR learning present memory persistence [33]. The memory persistence induced by exercise was associated with the increase of NE levels in the hippocampus induced by exercise [33], since this neurotransmitter involvement on memory persistence is recognized [49]. Here, we confirmed that the aerobic exercise shot is able to improve memory, promoting its persistence, as previously reported [33], and, for the first time, we show that one exercise session can minimize the memory deficits related to maternal deprivation. MD rats that were not able to consolidate OR memory, when submitted to one session of exercise after OR learning, not only consolidate memory but also form a strong memory, which persists for 21 days, at least.
It is important to consider that our results show that the simple familiarization to the exercise apparatus had some effects on memory. Familiarization to exercise was able to improve memory persistence in NMD animals—at 7 and 14 days, but not at 21, the same result of NMD+AE animals. Also, familiarization improved memory retention in MD animals (24 h test), which is not observed on MD animals not exposed to treadmill familiarization. This result could be attributed to a persistent effect of novelty (the physical exercise apparatus is a novelty for the rats), which has been shown to enhance short- and long-term memory by protein synthesis induction [45] or, what we consider more likely, to the familiarization to the treadmill, which could be considered as a short-term physical training and could induce some recognized physical exercise effects on the brain, as neuroplasticity, increasing brain blood supply, and others [23, 24, 27, 28, 36, 47]. Initially, we included the familiarization group because the exercise group needed to be submitted to the familiarization to treadmill before the exercise session, anyway the animals would have difficulties on running, and they could be stressed, so we would like to guarantee that this procedure did not have effects per se. What we found is that aerobic exercise presented better effects than familiarization, especially on rats with memory deficit related to MD, but familiarization also promoted benefits to memory.
The physiological mechanisms involved in the effects of an acute aerobic exercise can be many; among them, it is known that exercise can promote increase of catecholamine levels as norepinephrine (NE) and dopamine (DA) [50], neurotransmitters involved on modulation of memory consolidation. In fact, we observed that all NMD groups showed increase of NE levels in comparison to the naïve group. However, we were not able to verify the same changes in hippocampal NE levels after OR training in MD rats or in the rats submitted to AE session. On the other hand, differences on DA levels were not observed between groups.
A previous study showed that MD causes a decrease in tyrosine hydroxylase enzyme in rodents [51], which is the first enzyme for dopaminergic metabolism, converting tyrosine into dopamine precursor DOPA [52]. Considering this finding, we could think that a decrease in NE levels in MD rats may be due to a gap in the enzyme; however, a decrease in tyrosine hydroxylase enzyme would also lead to a decrease in DA levels, which we could not demonstrate in this study. On the other hand, it is known that the main source of NE to the hippocampus is the locus coeruleus (LC) [21] a structure located in the brain stem, whose neurons are affected by MD. MD affects the dendritic morphology of the LC neurons [22], which may impair noradrenergic synapses in the hippocampus and could explain the impossibility to improve NE release in the hippocampus after OR training. This decrease of NE on MD rat hippocampus was not reversed by acute exercise, since one single physical exercise session is not able to promote immediate protein synthesis and neuroplasticity that would be required to revert this morphological alterations [53].
Moreover, the difference between DA and NE levels observed might be due to the incoordination between the control of noradrenergic systems, which is influenced by sympathoadrenal and central nervous systems, and dopaminergic, influenced exclusively by the central nervous system [54] previous works on MD models highlighted the impact of this intervention on the pituitary-adrenal axis, which could influence specially NE sources [55]. Corroborating to our work, a previous study with adult female rats showed that in the face of different MD protocols there were no significant differences in DA levels [56]; the authors highlighted that the duration of stress exposure and the time elapsed between stress exposure and euthanasia may influence these inconsistent findings. Another possible explanation for the discrepancy between this study and the others that find dopaminergic alterations on MD rats is the variation in age, as most studies use MD models in adolescent rats and we used young adults [18, 20, 56].
Surprisingly, physical exercise did not promote NE alterations, as expected. These results also contradict previous results, although some of them use a single exercise session performed at high intensity without prior habituation, i.e., a protocol that differs a little from ours [31, 57]. This result suggests that increasing catecholamine levels could be related to the exercise intensity. Nonetheless, we can affirm that our results are specifically related to exercise effects, since, contrary to other studies, we did not use any type of aversive stimulus prior to or during the exercise session [58].
Despite the fact that we did not find significant differences in DA levels, we cannot assume that MD did not cause any disturbance on the dopaminergic system, as well as that the exercise did not influence this neurotransmitter release. It is important to highlight that the technique used can influence the measurements of DA and NE [59]. Although the HPLC technique used in our study had been previously used [33, 43], it is important to consider that the degradation of DA and NE can occur from 200 to 2000 milliseconds [52], which made their measurement difficult. So, measurements by in vivo microanalysis may provide more reliable results [60].
Finally, the improvement of cognitive deficits promoted by acute aerobic exercise may be associated with other factors that do not necessarily involve catecholamine modulation. Recent studies indicate that a single acute aerobic exercise session is effective to increase BDNF (brain-derived neurotrophic factor) mRNA, even in the absence of noradrenergic signaling [58]. BDNF is an important protein related to neural plasticity and closely related to long-lasting memory consolidation [61]. In addition, other studies suggest that epigenetic modulation through acute aerobic exercise [62] may induce histone acetylation, increasing HAT activity (histone acetyltransferases) in combination with the decrease of the activity of HDAC (histone deacetylases) in rat hippocampus, leading to neuroprotective effects [63].
In summary, acute aerobic exercise is an important procognitive stimulus that acts to attenuate cognitive deficits caused by MD. Despite the fact that we are not able to determine the exact modulatory mechanisms involved in the acute exercise effects, it is clearly an additional valuable measure to sustain the cognitive functions caused by early life stress.
5. Conclusion
MD promotes object recognition (OR) memory deficits. Acute physical exercise (AE) is an effective strategy to reverse recognition memory deficits related to MD. After OR training, NMD rats present increase of NE, which is not observed in any MD groups. One session of physical exercise is not able to change DA or NE hippocampal levels, suggesting that the exercise effects on memory are related to other neural mechanisms.
Additional Points
Highlights. (1) Maternal deprivation causes persistent mnemonic deficits. (2) One aerobic exercise shot reduces mnemonic deficits induced by maternal deprivation. (3) One aerobic exercise shot contributes to memory persistence. (4) Maternal deprivation avoids the hippocampal norepinephrine increase induced by object recognition learning.
Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil), finance code 001 and PROCAD program (grant number 88881.068493/2014-01), by the Universidade Federal do Pampa (UNIPAMPA/Brazil), by the Conselho Nacional de Pesquisa (CNPq/Brazil), and by the For Women in Science L’Oreal/UNESCO/ABC Program. PMS is supported by Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS/Brazil), BHSN is supported by CAPES/Brazil, GSC is supported by CNPq/Brazil, GDR is supported by UNIPAMPA/Brazil, and PBMC is supported by CNPq/Brazil and by UNIPAMPA/Brazil.
[1] X. Cao, S. Huang, J. Cao, T. Chen, P. Zhu, R. Zhu, P. Su, D. Ruan, "The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats," Developmental Psychobiology, vol. 56 no. 5, pp. 1102-1109, DOI: 10.1002/dev.21130, 2014.
[2] R. Frau, S. Fanni, V. Serra, N. Simola, S. C. Godar, F. Traccis, P. Devoto, M. Bortolato, M. Melis, "Dysfunctional mesocortical dopamine circuit at pre-adolescence is associated to aggressive behavior in MAO-A hypomorphic mice exposed to early life stress," Neuropharmacology, vol. 159,DOI: 10.1016/j.neuropharm.2019.01.032, 2019.
[3] A. Knafo, S. R. Jaffee, "Gene-environment correlation in developmental psychopathology," Development and Psychopathology, vol. 25 no. 1,DOI: 10.1017/S0954579412000855, 2013.
[4] D. M. de Campo, J. L. Cameron, J. M. Miano, D. A. Lewis, K. Mirnics, J. L. Fudge, "Maternal deprivation alters expression of neural maturation gene tbr1 in the amygdala paralaminar nucleus in infant female macaques," Developmental Psychobiology, vol. 59 no. 2, pp. 235-249, DOI: 10.1002/dev.21493, 2017.
[5] E. M. Marco, R. Llorente, M. López-Gallardo, V. Mela, Á. Llorente-Berzal, C. Prada, M. P. Viveros, "The maternal deprivation animal model revisited," Neuroscience & Biobehavioral Reviews, vol. 51, pp. 151-163, DOI: 10.1016/j.neubiorev.2015.01.015, 2015.
[6] R. J. Mclaughlin, G. GOBBI, "Cannabinoids and emotionality: a neuroanatomical perspective," Neuroscience, vol. 204, pp. 134-144, DOI: 10.1016/j.neuroscience.2011.07.052, 2012.
[7] J. Bruce, A. R. Tarullo, M. R. Gunnar, "Disinhibited social behavior among internationally adopted children," Development and Psychopathology, vol. 21 no. 1, pp. 157-171, DOI: 10.1017/S0954579409000108, 2009.
[8] Schizophrenia Working Group of the Psychiatric Genomics Consortium, "Biological insights from 108 schizophrenia-associated genetic loci," Nature, vol. 511 no. 7510, pp. 421-427, DOI: 10.1038/nature13595, 2014.
[9] E. D. Abercrombie, K. A. Keefe, D. S. DiFrischia, M. J. Zigmond, "Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex," Journal of Neurochemistry, vol. 52 no. 5, pp. 1655-1658, DOI: 10.1111/j.1471-4159.1989.tb09224.x, 1989.
[10] J. D. Berke, "What does dopamine mean?," Nature Neuroscience, vol. 21 no. 6, pp. 787-793, DOI: 10.1038/s41593-018-0152-y, 2018.
[11] Z. Kasanova, D. Hernaus, T. Vaessen, T. van Amelsvoort, O. Winz, A. Heinzel, J. Pruessner, F. M. Mottaghy, D. Collip, I. Myin-Germeys, "Early-life stress affects stress-related prefrontal dopamine activity in healthy adults, but not in individuals with psychotic disorder," PLoS One, vol. 11 no. 3,DOI: 10.1371/journal.pone.0150746, 2016.
[12] A. S. Loria, M. W. Brands, D. M. Pollock, J. S. Pollock, "Early life stress sensitizes the renal and systemic sympathetic system in rats," American Journal of Physiology-Renal Physiology, vol. 305 no. 3, pp. F390-F395, DOI: 10.1152/ajprenal.00008.2013, 2013.
[13] L. Pani, A. Porcella, G. L. Gessa, "The role of stress in the pathophysiology of the dopaminergic system," Molecular Psychiatry, vol. 5 no. 1, pp. 14-21, DOI: 10.1038/sj.mp.4000589, 2000.
[14] A. Bjorklund, S. B. Dunnett, "Dopamine neuron systems in the brain: an update," Trends in Neurosciences, vol. 30 no. 5, pp. 194-202, DOI: 10.1016/j.tins.2007.03.006, 2007.
[15] M. Fitzgerald, "The development of nociceptive circuits," Nature Reviews Neuroscience, vol. 6 no. 7, pp. 507-520, DOI: 10.1038/nrn1701, 2005.
[16] M. K. Fitzgerald, J. M. Otis, D. Mueller, "Dissociation of β 1- and β 2-adrenergic receptor subtypes in the retrieval of cocaine-associated memory," Behavioural Brain Research, vol. 296, pp. 94-99, DOI: 10.1016/j.bbr.2015.08.030, 2016.
[17] W. Schultz, "Multiple dopamine functions at different time courses," Annual Review of Neuroscience, vol. 30 no. 1, pp. 259-288, DOI: 10.1146/annurev.neuro.28.061604.135722, 2007.
[18] I. Majcher-Maślanka, A. Solarz, K. Wędzony, A. Chocyk, "The effects of early-life stress on dopamine system function in adolescent female rats," International Journal of Developmental Neuroscience, vol. 57, pp. 24-33, DOI: 10.1016/j.ijdevneu.2017.01.001, 2017.
[19] H. Ilchmann-Diounou, M. Olier, C. Lencina, A. Riba, S. Barretto, M. Nankap, C. Sommer, H. Guillou, S. Ellero-Simatos, L. Guzylack-Piriou, V. Théodorou, S. Ménard, "Early life stress induces type 2 diabetes-like features in ageing mice," Brain, Behavior, and Immunity, vol. 80, pp. 452-463, DOI: 10.1016/j.bbi.2019.04.025, 2019.
[20] J. B. Dwyer, F. M. Leslie, "Adolescent maturation of dopamine D1 and D2 receptor function and interactions in rodents," PLoS One, vol. 11 no. 1,DOI: 10.1371/journal.pone.0146966, 2016.
[21] T. L. Sterley, F. M. Howells, V. A. Russell, "Maternal separation increases GABA A receptor-mediated modulation of norepinephrine release in the hippocampus of a rat model of ADHD, the spontaneously hypertensive rat," Brain Research, vol. 1497, pp. 23-31, DOI: 10.1016/j.brainres.2012.12.029, 2013.
[22] J. D. Swinny, E. O'Farrell, B. C. Bingham, D. A. Piel, R. J. Valentino, S. G. Beck, "Neonatal rearing conditions distinctly shape locus coeruleus neuronal activity, dendritic arborization, and sensitivity to corticotrophin-releasing factor," International Journal of Neuropsychopharmacology, vol. 13 no. 04, pp. 515-525, DOI: 10.1017/S146114570999037X, 2010.
[23] W. Chen, J. Li, J. Liu, D. Wang, L. Hou, "Aerobic exercise improves food reward systems in obese rats via insulin signaling regulation of dopamine levels in the nucleus accumbens," ACS Chemical Neuroscience, vol. 10 no. 6, pp. 2801-2808, DOI: 10.1021/acschemneuro.9b00022, 2019.
[24] P. M. Sosa, H. L. Schimidt, C. Altermann, A. S. Vieira, F. W. S. Cibin, F. P. Carpes, P. B. Mello-Carpes, "Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion," Brazilian Journal of Medical and Biological Research, vol. 48 no. 9, pp. 798-804, DOI: 10.1590/1414-431x20154429, 2015.
[25] M. Asztalos, I. De Bourdeaudhuij, G. Cardon, "The relationship between physical activity and mental health varies across activity intensity levels and dimensions of mental health among women and men," Public Health Nutrition, vol. 13 no. 8, pp. 1207-1214, DOI: 10.1017/S1368980009992825, 2010.
[26] C. H. Chu, A. F. Kramer, T. F. Song, C. H. Wu, T. M. Hung, Y. K. Chang, "Acute exercise and neurocognitive development in preadolescents and young adults: an ERP study," Neural Plasticity, vol. 2017,DOI: 10.1155/2017/2631909, 2017.
[27] L. M. S. Cordeiro, P. C. R. Rabelo, M. M. Moraes, F. Teixeira-Coelho, C. C. Coimbra, S. P. Wanner, D. D. Soares, "Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems," Brazilian Journal of Medical and Biological Research, vol. 50 no. 12,DOI: 10.1590/1414-431x20176432, 2017.
[28] A. Dinoff, N. Herrmann, W. Swardfager, K. L. Lanctôt, "The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis," European Journal of Neuroscience, vol. 46 no. 1, pp. 1635-1646, DOI: 10.1111/ejn.13603, 2017.
[29] T. McMorris, K. Collard, J. Corbett, M. Dicks, J. P. Swain, "A test of the catecholamines hypothesis for an acute exercise-cognition interaction," Pharmacology Biochemistry and Behavior, vol. 89 no. 1, pp. 106-115, DOI: 10.1016/j.pbb.2007.11.007, 2008.
[30] T. McMorris, J. Graydon, "The effect of exercise on cognitive performance in soccer-specific tests," Journal of Sports Sciences, vol. 15 no. 5, pp. 459-468, DOI: 10.1080/026404197367092, 1997.
[31] R. Pagliari, L. Peyrin, "Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis," Journal of Applied Physiology, vol. 78 no. 6, pp. 2121-2130, DOI: 10.1152/jappl.1995.78.6.2121, 1995.
[32] D.’e. Sutoo, K. Akiyama, "Regulation of brain function by exercise," Neurobiology of Disease, vol. 13 no. 1,DOI: 10.1016/S0969-9961(03)00030-5, 2003.
[33] L. da Silva de Vargas, B.-H. S. d. Neves, R. Roehrs, I. Izquierdo, P. Mello-Carpes, "One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms," Behavioural Brain Research, vol. 329, pp. 120-126, DOI: 10.1016/j.bbr.2017.04.050, 2017.
[34] F. Benetti, P. B. Mello, J. S. Bonini, S. Monteiro, M. Cammarota, I. Izquierdo, "Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine," International Journal of Developmental Neuroscience, vol. 27 no. 1, pp. 59-64, DOI: 10.1016/j.ijdevneu.2008.09.200, 2009.
[35] P. B. Mello, F. Benetti, M. Cammarota, I. Izquierdo, "Physical exercise can reverse the deficit in fear memory induced by maternal deprivation," Neurobiology of Learning and Memory, vol. 92 no. 3, pp. 364-369, DOI: 10.1016/j.nlm.2009.04.004, 2009.
[36] B. H. Neves, J. Menezes, M. A. Souza, P. B. Mello-Carpes, "Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation," Physiology & Behavior, vol. 152 no. Part A, pp. 99-105, DOI: 10.1016/j.physbeh.2015.09.019, 2015.
[37] R. M. Arida, F. A. Scorza, S. G. da Silva, R. M. Cysneiros, E. A. Cavalheiro, "Exercise paradigms to study brain injury recovery in rodents," American Journal of Physical Medicine & Rehabilitation, vol. 90 no. 6, pp. 452-465, DOI: 10.1097/PHM.0b013e3182063a9c, 2011.
[38] G. A. Brooks, T. P. White, "Determination of metabolic and heart rate responses of rats to treadmill exercise," Journal of Applied Physiology, vol. 45 no. 6, pp. 1009-1015, DOI: 10.1152/jappl.1978.45.6.1009, 1978.
[39] F. Cechetti, P. V. Worm, V. R. Elsner, K. Bertoldi, E. Sanches, J. Ben, I. R. Siqueira, C. A. Netto, "Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat," Neurobiology of Learning and Memory, vol. 97 no. 1, pp. 90-96, DOI: 10.1016/j.nlm.2011.09.008, 2012.
[40] A. Ennaceur, J. Delacour, "A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data," Behavioural Brain Research, vol. 31 no. 1, pp. 47-59, DOI: 10.1016/0166-4328(88)90157-X, 1988.
[41] M. H. Malek, M. Hüttemann, I. Lee, J. W. Coburn, "Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuousversuscontinuous training," Experimental Physiology, vol. 98 no. 3, pp. 807-818, DOI: 10.1113/expphysiol.2012.070169, 2013.
[42] S. Pellow, P. Chopin, S. E. File, M. Briley, "Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat," Journal of Neuroscience Methods, vol. 14 no. 3, pp. 149-167, DOI: 10.1016/0165-0270(85)90031-7, 1985.
[43] J. Menezes, N. Alves, S. Borges, R. Roehrs, J. de Carvalho Myskiw, C. R. G. Furini, I. Izquierdo, P. B. Mello-Carpes, "Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus," Proceedings of the National Academy of Sciences, vol. 112 no. 13, pp. E1652-E1658, DOI: 10.1073/pnas.1502295112, 2015.
[44] M. O. Albuquerque Filho, B. S. de Freitas, R. C. L. Garcia, P. C. . F. Crivelaro, N. Schröder, M. N. M. de Lima, "Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats," Neuroscience, vol. 344, pp. 360-370, DOI: 10.1016/j.neuroscience.2016.12.054, 2017.
[45] J. Menezes, B. H. Neves, M. Souza, P. B. Mello-Carpes, "Green tea protects against memory deficits related to maternal deprivation," Physiology & Behavior, vol. 182, pp. 121-127, DOI: 10.1016/j.physbeh.2017.10.010, 2017.
[46] J. L. McGaugh, "Memory--a century of Consolidation," Science, vol. 287 no. 5451, pp. 248-251, DOI: 10.1126/science.287.5451.248, 2000.
[47] L. Rossi Dare, A. Garcia, N. Alves, D. Ventura Dias, M. A. de Souza, P. B. Mello-Carpes, "Physical and cognitive training are able to prevent recognition memory deficits related to amyloid beta neurotoxicity," Behavioural Brain Research, vol. 365, pp. 190-197, DOI: 10.1016/j.bbr.2019.03.007, 2019.
[48] F. de Jesus Furtado Almeida, B. B. Gambassi, P. A. Schwingel, A. E. R. A. F. Almeida, B. A. Sauaia, T. M. da Silva Sousa, J. O. B. Pulcherio, B. Rodrigues, V. J. Nina, "Possible benefits of different physical exercise programs after coronary artery bypass graft surgery: a minireview of selected randomized controlled trials," Sport Sciences for Health, vol. 13 no. 3, pp. 477-483, DOI: 10.1007/s11332-017-0400-7, 2017.
[49] P. B. Mello-Carpes, L. da Silva de Vargas, M. C. Gayer, R. Roehrs, I. Izquierdo, "Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence," Neurobiology of Learning and Memory, vol. 127, pp. 84-92, DOI: 10.1016/j.nlm.2015.11.014, 2016.
[50] B. Winter, C. Breitenstein, F. C. Mooren, K. Voelker, M. Fobker, A. Lechtermann, K. Krueger, A. Fromme, C. Korsukewitz, A. Floel, S. Knecht, "High impact running improves learning," Neurobiology of Learning and Memory, vol. 87 no. 4, pp. 597-609, DOI: 10.1016/j.nlm.2006.11.003, 2007.
[51] I. S. Pienaar, L. A. Kellaway, V. A. Russell, A. D. Smith, D. J. Stein, M. J. Zigmond, W. M. U. Daniels, "Maternal separation exaggerates the toxic effects of 6-hydroxydopamine in rats: implications for neurodegenerative disorders," Stress, vol. 11 no. 6, pp. 448-456, DOI: 10.1080/10253890801890721, 2008.
[52] H. Juárez Olguín, D. Calderón Guzmán, E. Hernández García, G. Barragán Mejía, "The role of dopamine and its dysfunction as a consequence of oxidative stress," Oxidative Medicine and Cellular Longevity, vol. 2016,DOI: 10.1155/2016/9730467, 2016.
[53] K. Knaepen, M. Goekint, E. M. Heyman, R. Meeusen, "Neuroplasticity — exercise-induced response of peripheral brain-derived neurotrophic factor," Sports Medicine, vol. 40 no. 9, pp. 765-801, DOI: 10.2165/11534530-000000000-00000, 2010.
[54] K. Gogberashvili, "The comparative effect of continuous and intermittent maternal separation on catecholamines blood concentrations among rat pups," Georgian Medical News, vol. no. 142, pp. 70-72, 2007.
[55] R. H. A. van der Doelen, W. Deschamps, C. D'Annibale, D. Peeters, R. A. Wevers, D. Zelena, J. R. Homberg, T. Kozicz, "Early life adversity and serotonin transporter gene variation interact at the level of the adrenal gland to affect the adult hypothalamo-pituitary- adrenal axis," Translational Psychiatry, vol. 4 no. 7,DOI: 10.1038/tp.2014.57, 2014.
[56] L. Arborelius, M. B. Eklund, "Both long and brief maternal separation produces persistent changes in tissue levels of brain monoamines in middle-aged female rats," Neuroscience, vol. 145 no. 2, pp. 738-750, DOI: 10.1016/j.neuroscience.2006.12.007, 2007.
[57] R. Pagliari, L. Peyrin, "Physical conditioning in rats influences the central and peripheral catecholamine responses to sustained exercise," European Journal of Applied Physiology and Occupational Physiology, vol. 71 no. 1, pp. 41-52, DOI: 10.1007/BF00511231, 1995.
[58] A. C. Venezia, E. Quinlan, S. M. Roth, "A single bout of exercise increases hippocampalBdnf: influence of chronic exercise and noradrenaline," Genes, Brain and Behavior, vol. 16 no. 8, pp. 800-811, DOI: 10.1111/gbb.12394, 2017.
[59] J. J. Kirkland, "Ultrafast reversed-phase high-performance liquid chromatographic separations: an overview," Journal of Chromatographic Science, vol. 38 no. 12, pp. 535-544, DOI: 10.1093/chromsci/38.12.535, 2000.
[60] E. Dremencov, L. Lacinova, G. Flik, J. H. A, T. I. F, B. H. C, "Purinergic regulation of brain catecholamine neurotransmission: In vivo electrophysiology and microdialysis study in rats," General Physiology and Biophysics, vol. 36 no. 04, pp. 431-441, DOI: 10.4149/gpb_2017039, 2017.
[61] P. Bekinschtein, M. Cammarota, J. H. Medina, "BDNF and memory processing," Neuropharmacology, vol. 76 no. Part C, pp. 677-683, DOI: 10.1016/j.neuropharm.2013.04.024, 2014.
[62] V. R. Elsner, G. A. Lovatel, K. Bertoldi, C. Vanzella, F. M. Santos, C. Spindler, E. F. de Almeida, P. Nardin, I. R. Siqueira, "Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus," Neuroscience, vol. 192, pp. 580-587, DOI: 10.1016/j.neuroscience.2011.06.066, 2011.
[63] V. R. Elsner, C. Basso, K. Bertoldi, L. C. F. de Meireles, L. R. Cechinel, I. R. Siqueira, "Differential effect of treadmill exercise on histone deacetylase activity in rat striatum at different stages of development," The Journal of Physiological Sciences, vol. 67 no. 3, pp. 387-394, DOI: 10.1007/s12576-016-0471-2, 2017.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Priscila Marques Sosa et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
During the neonatal period, the brain is susceptible to external influences. Exposure to stressful events during this phase of life influences brain development and impacts adult life. In animals, the maternal deprivation (MD) model is effective in mimicking stress in the early stages of development. In contrast, physical exercise seems to be able to prevent deficits in memory consolidation. Although the effects of chronic exercise in cognition are already well established, little is known about the effects of acute aerobic exercise. Here, male Wistar rats divided into deprived (MD) and nondeprived (NMD) rats were submitted to the object recognition (OR) memory test. Immediately after OR training, some of the rats were submitted to a single aerobic exercise session for 30 minutes. Memory consolidation and persistence were evaluated by retention tests performed 24 h and 7, 14, and 21 days after OR training. We show that a single physical exercise session is able to modulate learning by promoting memory consolidation and persistence in rats with cognitive deficits induced by MD. Hippocampal dopamine levels, measured by HPLC, were not altered after OR training in rats that performed and in rats that did not perform an exercise session; on the other hand, while OR training promoted increase of hippocampal norepinephrine in NMD rats, the MD rats did not present this increase, regardless of the practice or not of exercise.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
2 Grupo Interdisciplinar de Pesquisa em Prática de Ensino, Universidade Federal do Pampa, Uruguaiana, RS, Brazil