Full Text

Turn on search term navigation

© 2020 Ohyama et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cortical neurons fire intermittently and synchronously during non-rapid eye movement sleep (NREMS), in which active and silent periods are referred to as ON and OFF periods, respectively. Neuronal firing rates during ON periods (NREMS-ON-activity) are similar to those of wakefulness (W-activity), raising the possibility that NREMS-ON neuronal-activity is fragmented W-activity. To test this, we investigated the patterning and organization of cortical spike trains and of spike ensembles in neuronal networks using extracellular recordings in mice. Firing rates of neurons during NREMS-ON and W were similar, but showed enhanced bursting in NREMS with no apparent preference in occurrence, relative to the beginning or end of the on-state. Additionally, there was an overall increase in the randomness of occurrence of sequences comprised of multi-neuron ensembles in NREMS recorded from tetrodes. In association with increased burst firing, somatic calcium transients were increased in NREMS. The increased calcium transients associated with bursting during NREM may activate calcium-dependent, cell-signaling pathways for sleep related cellular processes.

Details

Title
Structure of cortical network activity across natural wake and sleep states in mice
Author
Ohyama, Kaoru; Kanda, Takeshi; Miyazaki, Takehiro; Tsujino, Natsuko; Ishii, Ryo; Ishikawa, Yukiko; Muramoto, Hiroki; Grenier, Francois; Makino, Yuichi; McHugh, Thomas J; Yanagisawa, Masashi; Greene, Robert W; Vogt, Kaspar E
First page
e0233561
Section
Research Article
Publication year
2020
Publication date
May 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407761541
Copyright
© 2020 Ohyama et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.