Full text

Turn on search term navigation

Copyright © 2020 Yvonne Höller et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy, memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively assessed patients with temporal lobe epilepsy (N = 9), mild cognitive impairment (N = 19), and subjective cognitive complaints (N = 4) and healthy controls (N = 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. The best sensitivity/specificity for decline was 72%/82% for executive functions based on a feature combination from MRI volumetry and EEG partial coherence during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology; 84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a more general model of cognitive performance decline.

Details

Title
Prediction of Cognitive Decline in Temporal Lobe Epilepsy and Mild Cognitive Impairment by EEG, MRI, and Neuropsychology
Author
Höller, Yvonne 1   VIAFID ORCID Logo  ; Butz, Kevin H G 2 ; Thomschewski, Aljoscha C 3 ; Schmid, Elisabeth V 3 ; Hofer, Christoph D 4 ; Uhl, Andreas 4 ; Bathke, Arne C 5 ; Staffen, Wolfgang 2 ; Nardone, Raffaele 6 ; Schwimmbeck, Fabian 2 ; Leitinger, Markus 2 ; Giorgi Kuchukhidze 2 ; Derner, Marlene 7 ; Fell, Jürgen 7 ; Trinka, Eugen 2 

 Faculty of Psychology, University of Akureyri, Akureyri, Iceland; Department of Neurology, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria 
 Department of Neurology, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria 
 Department of Neurology, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria 
 Multimedia Signal Processing and Security Lab, Department of Computer Sciences, Paris Lodron University, Salzburg, Austria 
 Research Group Statistics and Probability, Department of Mathematics, Paris Lodron University, Salzburg, Austria 
 Department of Neurology, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, F. Tappeiner Hospital, Merano, Italy 
 Department of Epileptology, University of Bonn, Bonn, Germany 
Editor
Daniele Bibbo
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2407981725
Copyright
Copyright © 2020 Yvonne Höller et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/