It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Generative adversarial network (GAN) is one of the most promising methods for unsupervised learning in recent years. GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis, image super-resolution, video generation, image translation, etc. Compared with classical algorithms, quantum algorithms have their unique advantages in dealing with complex tasks, quantum machine learning (QML) is one of the most promising quantum algorithms with the rapid development of quantum technology. Specifically, Quantum generative adversarial network (QGAN) has shown the potential exponential quantum speedups in terms of performance. Meanwhile, QGAN also exhibits some problems, such as barren plateaus, unstable gradient, model collapse, absent complete scientific evaluation system, etc. How to improve the theory of QGAN and apply it that have attracted some researcher. In this paper, we comprehensively and deeply review recently proposed GAN and QAGN models and their applications, and we discuss the existing problems and future research trends of QGAN.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer