It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Vestigial structures are key indicators of evolutionary descent, but the mechanisms underlying their development are poorly understood. This study examines vestigial eye formation in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling morph and multiple populations of blind cave morphs. Cavefish embryos initially develop eyes, but they subsequently degenerate and become vestigial structures embedded in the head. The mutated genes involved in cavefish vestigial eye formation have not been characterized. Here we identify cystathionine ß-synthase a (cbsa), which encodes the key enzyme of the transsulfuration pathway, as one of the mutated genes responsible for eye degeneration in multiple cavefish populations. The inactivation of cbsa affects eye development by increasing the transsulfuration intermediate homocysteine and inducing defects in optic vasculature, which result in aneurysms and eye hemorrhages. Our findings suggest that localized modifications in the circulatory system may have contributed to the evolution of vestigial eyes in cavefish.
The teleost Astyanax mexicanus has sighted morphs living in surface rivers and various blind morphs living in caves. Here, the authors suggest that loss of eyes in cave morphs is linked to mutations in the cystathionine ß-synthase a (cbsa) gene, which cause eye degeneration by disrupting function of the optic circulatory system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Maryland, Department of Biology, College Park, USA (GRID:grid.164295.d) (ISNI:0000 0001 0941 7177)
2 Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Division of Developmental Biology, Bethesda, USA (GRID:grid.164295.d)
3 Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Division of Developmental Biology, Bethesda, USA (GRID:grid.164295.d); Stanford University, School of Medicine, Department of Genetics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956)