Abstract

Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 μm × 16 μm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.

Designing high-resolution displays based on colloidal quantum dots remains a challenge. Here, the authors demonstrate a photo-patterning method to develop CdSe-based core-shell quantum dots patterns of red, green and blue colours with diameters ranging from 7 to 20 nm and resolution of 1400 pixels per inch.

Details

Title
High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking
Author
Yang Jeehye 1 ; Hahm Donghyo 2 ; Kim, Kyunghwan 3   VIAFID ORCID Logo  ; Rhee Seunghyun 3 ; Lee, Myeongjae 4   VIAFID ORCID Logo  ; Kim Seunghan 1 ; Chang, Jun Hyuk 2 ; Park, Hye Won 1 ; Lim, Jaehoon 5 ; Lee, Minkyoung 1 ; Kim Hyeokjun 1 ; Bang Joohee 6 ; Ahn Hyungju 6 ; Cho, Jeong Ho 7 ; Kwak Jeonghun 3   VIAFID ORCID Logo  ; Kim, BongSoo 8 ; Lee, Changhee 3   VIAFID ORCID Logo  ; Bae, Wan Ki 2   VIAFID ORCID Logo  ; Kang Moon Sung 1   VIAFID ORCID Logo 

 Sogang University, Department of Chemical and Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.263736.5) (ISNI:0000 0001 0286 5954) 
 Sungkyunkwan University (SKKU), SKKU Advanced Institute of Nanotechnology (SAINT), School of Nano Science & Technology, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X) 
 Seoul National University, Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul, Republic of Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905) 
 Korea University, Department of Chemistry, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678) 
 Center for Artificial Atoms, Sungkyunkwan University (SKKU), Department of Energy Science, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X) 
 POSTECH, Pohang Accelerator Laboratory, Pohang, Republic of Korea (GRID:grid.49100.3c) (ISNI:0000 0001 0742 4007) 
 Yonsei University, Department of Chemical and Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454) 
 Ulsan National Institute of Science and Technology (UNIST), Department of Chemistry, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2410659314
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.