Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The hydrodynamic characteristics of multi-propeller autonomous underwater vehicles (AUV) is usually complicated and it is difficult to obtain an accurate mathematical model. A modeling method based on CFD calculation and maximum likelihood identification algorithm is proposed for this problem. Firstly, rough hydrodynamic parameters of AUV hull are obtained by CFD calculation. Secondly, on the basis of rough parameters, a maximum likelihood identification algorithm is proposed to adjust the parameters and improve the model precision. Besides, the method to improve the convergence of identification algorithm is analyzed by considering the characteristics of AUV model structure. Finally, the identification algorithm and identification results were validated with experimental data. It was found that this method has good convergence and adaptability. In particular, the identification results of turning force and torque parameters are highly consistent in different identification experiments, which indicates that this method can well extract the maneuvering characteristics of AUVs, thus contributing to the controller design of AUVs. The research of this paper has potential application for the modeling and control of multi-propeller AUVs.

Details

Title
Modeling of Autonomous Underwater Vehicles with Multi-Propellers Based on Maximum Likelihood Method
Author
Feiyan Min; Pan, Guoliang; Xu, Xuefeng
First page
407
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2410879623
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.