It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Direct transfer of protons and electrons between two tandem reactions is still a great challenge, because overall reaction kinetics is seriously affected by diffusion rate of the proton and electron carriers. We herein report a host–guest supramolecular strategy based on the incorporation of NADH mimics onto the surface of a metal-organic capsule to encapsulate flavin analogues for catalytic biomimetic monooxygenations in conjunction with enzymes. Coupling an artificial catalysis and a natural enzymatic catalysis in the pocket of an enzyme, this host–guest catalyst–enzyme system allows direct proton and electron transport between two catalytic processes via NADH mimics for the monooxygenation of both cyclobutanones and thioethers. This host–guest approach, which involves the direct coupling of abiotic and biotic catalysts via a NADH-containing host, is quite promising compared to normal catalyst–enzyme systems, as it offers the key advantages of supramolecular catalysis in integrated chemical and biological synthetic sequences.
Combining artificial and natural enzymes is a strategy to mimic biocatalytic processes with high efficiency and selectivity. This study reports a dual catalytic system composed of flavin adenine dinucleotide model and NADH mimics to catalyze the monooxygenation of cyclobutanones and thioethers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian, People’s Republic of China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930)
2 Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian, People’s Republic of China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930); Dalian University of Technology, Zhang Dayu School of Chemistry, Dalian, People’s Republic of China (GRID:grid.30055.33) (ISNI:0000 0000 9247 7930)