Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In modern high-performance computing (HPC) and large-scale data processing environments, the efficient utilization and scalability of memory resources are critical determinants of overall system performance. Architectures such as non-uniform memory access (NUMA) and tiered memory systems frequently suffer performance degradation due to remote accesses stemming from shared data among multiple tasks. This paper proposes LACX, a shared data migration technique leveraging Compute Express Link (CXL), to address these challenges. LACX preserves the migration cycle of automatic NUMA balancing (AutoNUMA) while identifying shared data characteristics and migrating such data to CXL memory instead of DRAM, thereby maximizing DRAM locality. The proposed method utilizes existing kernel structures and data to efficiently identify and manage shared data without incurring additional overhead, and it effectively avoids conflicts with AutoNUMA policies. Evaluation results demonstrate that, although remote accesses to shared data can degrade performance in low-tier memory scenarios, LACX significantly improves overall memory bandwidth utilization and system performance in high-tier memory and memory-intensive workload environments by distributing DRAM bandwidth. This work presents a practical, lightweight approach to shared data management in tiered memory environments and highlights new directions for next-generation memory management policies.

Details

Title
LACX: Locality-Aware Shared Data Migration in NUMA + CXL Tiered Memory
Author
Jeong Hayong  VIAFID ORCID Logo  ; Song Binwon; Minwoo, Jo  VIAFID ORCID Logo  ; Heeseung, Jo  VIAFID ORCID Logo 
First page
4235
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3271026434
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.