Full Text

Turn on search term navigation

© 2020 Moss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rapid resuscitation of an opioid overdose with naloxone, an opioid antagonist, is critical. We developed an opioid receptor quantitative systems pharmacology (QSP) model for evaluation of naloxone dosing. In this model we examined three opioid exposure levels that have been reported in the literature (25 ng/ml, 50 ng/ml, and 75 ng/ml of fentanyl). The model predicted naloxone-fentanyl interaction at the mu opioid receptor over a range of three naloxone doses. For a 2 mg intramuscular (IM) dose of naloxone at lower fentanyl exposure levels (25 ng/ml and 50 ng/ml), the time to decreasing mu receptor occupancy by fentanyl to 50% was 3 and 10 minutes, respectively. However, at a higher fentanyl exposure level (75 ng/ml), a dose of 2 mg IM of the naloxone failed to reduce mu receptor occupancy by fentanyl to 50%. In contrast, naloxone doses of 5 mg and 10 mg IM reduced mu receptor occupancy by fentanyl to 50% in 5.5 and 4 minutes respectively. These results suggest that the current doses of naloxone (2 mg IM or 4 mg intranasal (IN)) may be inadequate for rapid reversal of toxicity due to fentanyl exposure and that increasing the dose of naloxone is likely to improve outcomes.

Details

Title
Higher naloxone dosing in a quantitative systems pharmacology model that predicts naloxone-fentanyl competition at the opioid mu receptor level
Author
Moss, Ronald B; Meghan McCabe Pryor; Baillie, Rebecca; Kudrycki, Katherine; Friedrich, Christina; Reed, Mike; Carlo, Dennis J
First page
e0234683
Section
Research Article
Publication year
2020
Publication date
Jun 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2413949780
Copyright
© 2020 Moss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.