Full text

Turn on search term navigation

© 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier–Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

Details

Title
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
Author
Ullrich, Paul A 1 ; Jablonowski, Christiane 2   VIAFID ORCID Logo  ; Kent, James 3 ; Lauritzen, Peter H 4 ; Nair, Ramachandran 4 ; Reed, Kevin A 5   VIAFID ORCID Logo  ; Zarzycki, Colin M 4 ; Hall, David M 6 ; Dazlich, Don 7 ; Heikes, Ross 7 ; Konor, Celal 7 ; Randall, David 7 ; Dubos, Thomas 8 ; Meurdesoif, Yann 8 ; Chen, Xi 9   VIAFID ORCID Logo  ; Harris, Lucas 9   VIAFID ORCID Logo  ; Kühnlein, Christian 10   VIAFID ORCID Logo  ; Lee, Vivian 11 ; Qaddouri, Abdessamad 11 ; Girard, Claude 11 ; Giorgetta, Marco 12   VIAFID ORCID Logo  ; Reinert, Daniel 13   VIAFID ORCID Logo  ; Klemp, Joseph 4 ; Park, Sang-Hun 14 ; Skamarock, William 4 ; Miura, Hiroaki 15 ; Ohno, Tomoki 16 ; Yoshida, Ryuji 17 ; Walko, Robert 18 ; Reinecke, Alex 19 ; Viner, Kevin 19 

 University of California, Davis, Davis, CA, USA 
 University of Michigan, Ann Arbor, MI, USA 
 University of South Wales, Pontypridd, Wales, UK 
 National Center for Atmospheric Research, Boulder, CO, USA 
 Stony Brook University, Stony Brook, NY, USA 
 University of Colorado, Boulder, Boulder, CO, USA 
 Colorado State University, Fort Collins, CO, USA 
 Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace (IPSL), Paris, France 
 Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA 
10  European Center for Medium-Range Weather Forecasting (ECMWF), Reading, UK 
11  Environment and Climate Change Canada (ECCC), Dorval, Québec, Canada 
12  Max Planck Institute for Meteorology, Hamburg, Germany 
13  Deutscher Wetterdienst (DWD), Offenbach am Main, Germany 
14  Yonsei University, Seoul, South Korea 
15  University of Tokyo, Bunkyo, Tokyo, Japan 
16  Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan 
17  RIKEN AICS/Kobe University, Kobe, Japan 
18  University of Miami, Coral Gables, FL, USA 
19  Naval Research Laboratory, Monterey, CA, USA 
Pages
4477-4509
Publication year
2017
Publication date
2017
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414024324
Copyright
© 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.