Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The surface energy budget (SEB) of polar regions is key to understanding the polar amplification of global climate change and its worldwide consequences. However, despite a growing network of ground-based automatic weather stations that measure the radiative components of the SEB, extensive areas remain where no ground-based observations are available. Satellite remote sensing has emerged as a potential solution to retrieve components of the SEB over remote areas, with radar and lidar aboard the CloudSat and CALIPSO satellites among the first to enable estimates of surface radiative long-wave (LW) and short-wave (SW) fluxes based on active cloud observations. However, due to the small swath footprints, combined with a return cycle of 16 days, questions arise as to how CloudSat and CALIPSO observations should be optimally sampled in order to retrieve representative fluxes for a given location. Here we present a smart sampling approach to retrieve downwelling surface radiative fluxes from CloudSat and CALIPSO observations for any given land-based point-of-interest (POI) in polar regions. The method comprises a spatial correction that allows the distance between the satellite footprint and the POI to be increased in order to raise the satellite sampling frequency. Sampling frequency is enhanced on average from only two unique satellite overpasses each month for limited-distance sampling < 10 km from the POI, to 35 satellite overpasses for the smart sampling approach. This reduces the root-mean-square errors on monthly mean flux estimates compared to ground-based measurements from 23 to 10 W m-2 (LW) and from 43 to 14 W m-2 (SW). The added value of the smart sampling approach is shown to be largest on finer temporal resolutions, where limited-distance sampling suffers from severely limited sampling frequencies. Finally, the methodology is illustrated for Pine Island Glacier (Antarctica) and the Greenland northern interior. Although few ground-based observations are available for these remote areas, important climatic changes have been recently reported. Using the smart sampling approach, 5-day moving average time series of downwelling LW and SW fluxes are demonstrated. We conclude that the smart sampling approach may help to reduce the observational gaps that remain in polar regions to further refine the quantification of the polar SEB.

Details

Title
Improving satellite-retrieved surface radiative fluxes in polar regions using a smart sampling approach
Author
Kristof Van Tricht 1   VIAFID ORCID Logo  ; Lhermitte, Stef 2   VIAFID ORCID Logo  ; Gorodetskaya, Irina V 3 ; Nicole P M van Lipzig 4 

 KU Leuven – University of Leuven Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium; Invited contribution by K. Van Tricht, recipient of the EGU Outstanding Student Poster (OSP) Award 2015 
 KU Leuven – University of Leuven Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, the Netherlands 
 KU Leuven – University of Leuven Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium; CESAM – Centre for Environmental and Marine Studies, Department of Physics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal 
 KU Leuven – University of Leuven Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium 
Pages
2379-2397
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414024536
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.