1 Introduction
The share of greenhouse gas (GHG) emissions released from urban areas has continued to increase as a result of urbanization (). At present 55 % of the global population resides in urban areas , a number that is projected to rise to 68 % by 2050 . Meanwhile urban areas cover less than 3 % of the land surface worldwide but consume over 66 % of the world's energy and generate more than 70 % of anthropogenic GHG emissions . Carbon dioxide () emissions from energy use in cities are estimated to comprise more than 75 % of the global energy-related , with a rise of 1.8 % yr projected under business-as-usual scenarios between 2006 and 2030 . Methane () emissions from energy, waste, agriculture and transportation in urban areas make up approximately 21 % of the global emissions (). As emission hotspots, urban areas therefore play a vital role in GHG mitigation. It is crucial to find appropriate methods for understanding and projecting the effects of GHG emissions on urban areas and for formulating mitigation strategies.
There are two methods for the quantitative analysis of GHG emissions: the bottom-up approach and the top-down approach (). The bottom-up approach calculates emissions based on activity data (i.e., a quantitative measure of the activity that can emit GHGs) and emission factors . This approach has some uncertainty, e.g., on the national fossil-fuel emission estimates, ranging from a few percent (e.g., 3 %–5 % for the US) to a maximum of over 50 % for countries with fewer resources for data collection and a poor statistical framework . The considerable uncertainties are caused by the large variability in source-specific and country-specific emission factors and the incomplete understanding of emission processes (). These uncertainties grow larger at subnational scales, when estimating the disaggregation of the national annual totals in space and time. The top-down approach can not only provide estimated global fluxes but also verify the consistency and assess the uncertainties of bottom-up emission inventories (). However, it is hard to quantify the statistical errors attached to both atmospheric observations and prior knowledge about the distribution of emissions and sinks .
suggested that column measurements can provide a promising route to improving the detection of emitted from major source regions, possibly avoiding extensive surface measurements near such regions. Such measurements, i.e., measurements of concentration averaged over a column of air, are performed to help to disentangle the effects of atmospheric mixing from the surface exchange and decrease the biases associated with estimates of carbon sources and sinks in atmospheric inversions . Compared to surface values, urban enhancements in columns are less sensitive to boundary-layer heights (), and column observations have the potential to mitigate mixing height errors in an atmospheric inversion system . Atmospheric GHG column measurements combined with inverse models are thus a promising method for analyzing GHG emissions and can be used to analyze their spatial and temporal variability ().
In order to focus the top-down approach on concentration differences caused by local and regional emission sources, and in particular to quantify urban emissions, the differential column methodology (DCM) was proposed. It evaluates differences between column measurements at different sites. applied the DCM using the compact Fourier-transform spectrometers (FTSs) EM27/SUN (Bruker Optik, Germany) and demonstrated the capability of differential column measurements for determining urban and local emissions in combination with column models. Citywide GHG column measurement campaigns have been carried out, e.g., in Boston , Indianapolis , San Francisco, Berlin and Munich . However, only a few studies have combined differential column measurements with high-resolution models. simulated the column data at upwind and downwind sites of a gas-fired power plant in Munich using the computational fluid dynamic (CFD) model and compared them with the column measurements. quantified emissions from the largest dairies in the southern California region, using four EM27/SUNs in combination with the Weather Research and Forecasting model (WRF) in the large-eddy simulation mode. deployed five EM27/SUN spectrometers in the Paris metropolitan area and analyzed the data with the atmospheric transport model framework CHIMERE-CAMS.
This paper carries out a quantitative analysis of GHG for the Berlin area in combination with DCM. We utilize the mesoscale WRF model coupled with GHG modules
The total annual emissions of Berlin (21.3 million t in 2010) approximately correspond to those of Croatia, Jordan or the Dominican Republic . With its strong regulatory influence as a state within Germany, and having a strongly supportive policy, Berlin has already transformed itself into a climate-friendly city in which emissions have been reduced by a third compared with 1990 levels, aiming for carbon neutrality by 2050 . Berlin therefore needs to assess and identify the emission sources accurately at the current stage to provide solid scientific support for the selection of mitigation options. Additionally, Berlin is an ideal pilot case for developing and testing simulations because the city is relatively isolated from other large cities with high emissions, such that anthropogenic GHG anomalies around Berlin can confidently be attributed to the city itself.
The major goals of our work in this context are (1) to simulate high-resolution (1 km) and concentrations for Berlin using WRF-GHG, attributing the changes in concentrations to different emission processes, (2) to compare the simulation outputs with the observations from a column measurement network in Berlin , assessing the precision of WRF-GHG, and (3) to use DCM in the simulation analysis, testing the feasibly of this approach. The structure of this paper is as follows: the model with its domain and external data sources are described in Sect. . A comparison analysis for wind fields and concentration fields is presented in Sect. , and and concentrations related to different processes (e.g., the anthropogenic component) are discussed. DCM, for the comparison of concentration fields and the tracer analysis, is presented and discussed in Sect. . Section provides the discussion and summary of this study.
2 WRF-GHG modeling system
As mentioned in Sect. 1, we use the WRF model version 3.2 coupled with GHG modules to quantify the uptake and emission of atmospheric GHGs around Berlin at a high resolution of 1 km. WRF follows the fully compressible nonhydrostatic Euler equations () and is based on the actual meteorological data in this case study. The meteorological initial conditions and lateral boundary conditions were taken from the Global Forecast System (GFS) model reanalysis in which in situ measurements and satellite observations were assimilated. Tracers in WRF-GHG are transported online in a passive way, i.e., without any chemical loss or production, when the tracer transport option is used (). As shown in Fig. , three domains are set up here, whose dimensions are horizontal grid points with a spacing of 9 km for the coarsest domain (d01), 3 km for the middle domain (d02) and 1 km for the innermost domain (d03). WRF uses a terrain-following hydrostatic pressure vertical coordinate . In our case, 26 vertical levels are defined from the surface up to 50 hPa, 14 of which are in the lowest 2 km of the atmosphere. The innermost domain, d03, envelops all five measurement sites (see Sect. 3.1) to assess the simulation by comparing with the measured data. Berlin lies in the North European Plain on flat land (crossed by northward-flowing watercourses), which avoids the vertical interpolation problems caused by topography differences (Fig. ). The Lambert conformal conic (LCC) projection is selected as a map projection. The simulated time span is from 18:00 UTC on 30 June to 00:00 UTC on 11 July in 2014. The description of the workflow for running WRF-GHG can be found in Appendix A.
Figure 1
The topography map for the three domains in our study. The domain d03 is centered over Berlin, at 13.383° N, 52.517° E, and is marked with a red star. The boundary of Berlin from GADM (available at
[Figure omitted. See PDF]
The meteorological fields are obtained from the Global Forecast System (GFS) model at a horizontal resolution of 0.5, with 64 vertical layers and a temporal resolution of 3 h (as available via the NOAA's National Center for Environmental Information;
The simulation of and fluxes with different emission tracers in WRF-GHG is based on flux models and emission inventories which are either already implemented inside the model modules (online calculation) or constitute external datasets (offline calculation). The flux values from external emission inventories are converted into atmospheric concentrations and added to the corresponding tracer variables. In combination with the background concentration fields for and that refer to the and values without any sources and sinks in the targeted domain, the tracer contributions are summed up to obtain the total concentrations: 1 where and represent the total and , and are the background and , and stand for the changes in from the anthropogenic emissions, is the change in from the biogenic activities and is the change in from soil uptake, and and are the tiny computational errors for and that are described in detail in Appendix B. In the transport process, the relationship shown in Eq. (1) holds for each vertical level.
The biogenic emission is calculated online using VPRM , in which the hourly Net Ecosystem Exchange (NEE) of reflects the biospheric fluxes between the terrestrial biosphere and the atmosphere, estimated by the sum of gross ecosystem exchange (GEE) and respiration. VPRM in WRF-GHG calculates biogenic fluxes initialized by vegetation indices (land surface water index – LSWI, enhanced vegetation index – EVI, etc.) from the MODIS satellite (as available via
We use the external dataset Emission Database for Global Atmospheric Research version 4.1 (EDGAR V.4.1) for the anthropogenic fluxes in our study. EDGAR V.4.1 provides annually varying global anthropogenic GHG emissions and air pollutants at a spatial resolution of 0.1 (), whose source sectors include industrial processes, on-road and off-road sources in transport, large-scale biomass burning, and other anthropogenic sources . Here we apply time factors for seasonal, weekly, daily and diurnal variations defined by the time profiles published on the EDGAR website (
3.1 Description of measurement sites
The measurement campaign used for comparison with WRF-GHG in this paper was performed from 23 June to 11 July 2014 in Berlin using five spectrometers . It allows us to both test the precision of WRF-GHG (Sect. ) and verify differential column methodology (DCM) as our analytic methodology (Sect. ). In their measurement campaign, used five portable Bruker EM27/SUN FTSs for atmospheric measurements based on solar absorption spectroscopy. Five sampling stations around Berlin were set up, four of which (Mahlsdorf, Heiligensee, Lindenberg and Lichtenrade) were roughly situated along a circle with a radius of 12 km around the center of Berlin. Another sampling site was closer to the city center and located inside the Berlin motorway ring at Charlottenburg (Fig. ). Detailed information on this measurement campaign is given in , and provide additional details on the calibration of the spectrometers, precision and instrument-to-instrument biases.
3.2
Comparison of wind fields at 10 m
Winds have a strong impact on the vertical mixing of GHGs and a direct influence on their atmospheric transport patterns. Hence, we firstly compare the wind speeds and wind directions obtained from WRF-GHG to the measurements such that deviations between the simulated and measured wind fields are assessed. The wind measurements are not exactly co-located with the spectrometers mentioned in Sect. 3.1, but are rather located at three sampling sites (Tegel, Schönefeld and Tempelhof) and measure at a height of 10 m above the ground. The simulated wind speed at 10 m () and wind direction at 10 m () are calculated following the equations 2 where and are the components of the horizontal wind, towards the east and north, respectively, which can be obtained from WRF-GHG output files.
Figure 2Variation and differences between simulated and measured wind fields for (a) wind speeds and (b) wind directions from 1 to 10 July 2014 at the three measurement sites, Schönefeld (red lines), Tegel (black lines) and Tempelhof (blue lines), in Berlin. The solid lines represent the simulated wind fields provided by WRF-GHG, and the dashed lines depict the measured wind fields. The differences in (a) and (b) are simulations minus measurements. FTS measurement time periods on each date are marked by gray shaded areas.
[Figure omitted. See PDF]
Figure shows the comparisons of wind speeds (Fig. a) and wind directions (Fig. b) between simulations and observations at 10 m from 1 to 10 July and the model–measurement differences. EM27/SUN only operates in the daytime when there is sufficient sunlight; the detailed description of the instrument can be found in , and . The instrumental working periods are marked by gray shaded boxes in Fig. . The measured (dashed lines) and simulated (solid) wind speeds (Fig. a) at 10 m show similar trends and demonstrate relatively good agreement over the 10 d time series, with a root-mean-square error (RMSE) of 0.9247 m s. Large uncertainties in wind speeds are found to appear always with the lower wind speeds, mostly at night. In terms of wind directions at 10 m, we observe that the simulated wind directions show similar but slightly underestimated fluctuations (Fig. b), which result in an RMSE of 60.8328. Larger uncertainties in wind directions always exist during the low wind speed periods (Fig. a, b). During the instrumental working period (within the daytime), the simulations fit better with the measurements with relatively lower RMSEs of 0.6928 m s for wind speeds and 41.4793 for wind directions. We find that the measured wind fields (both wind speeds and wind directions) have more fluctuations compared to the simulations. This could be caused by really fast wind changes which the model, simulating a somewhat idealized environment, is not able to capture. To be specific, local turbulence given by urban canopy, buildings, etc., is not represented well in the model.
3.3 Comparison of pressure-weighted column-averaged concentrationsIn the following, we use the measured concentration fields to compare with the simulated fields. An FTS EM27/SUN can measure the column-integrated amount of a tracer through the atmospheric column with excellent precision, yielding the column-averaged dry-air mole fractions (DMFs) of the target gases (). The measured DMFs of and are denoted by and . used constant a priori profile shapes in the retrievals of measurements.
When comparing remote sensing observations to model data (or also datasets from different remote sensing instruments to one another), limitations of the instruments in reconstructing the actual atmospheric state need to be taken into account. In general, this requires the a priori profile that is used for the retrieval and the averaging kernel matrix, which specifies the loss of vertical resolution (fine vertical details of the actual trace gas profile cannot be resolved) and limited sensitivity (e.g., ). In the case of EM27/SUN, the spectrometers used in the network offer only a low spectral resolution of 0.5 cm. Therefore, performing a simple least-squares fit by scaling retrieval of the a priori profile is generally appropriate. In this case, there is no need to specify a full averaging kernel matrix; instead, the specification of a total column sensitivity is sufficient. The total column sensitivity is a vector (being a function of altitude), which specifies to which degree an excess partial column superimposed on the actual profile at a certain input altitude is reflected in the retrieved total column amount. This sensitivity vector is a function of a solar zenith angle (SZA; and ground pressure), mainly due to the fact that the observed signal levels in different channels building the spectral scene used for the retrieval are shaped by a mixture of weaker and stronger absorptions. (If all spectral lines in the spectral scene are optically thin and too narrow to be resolved by the spectral measurement, the sensitivity would approach unity throughout.)
Figure 3
(a) Daily variations in solar zenith angle (SZA) for five simulation dates (1, 3, 4, 6 and 10 July), and the vertical distributions of column sensitivities for (b) and (c) on 4 July. In (b) and (c), the solid lines represent our derived column sensitivities for EM27/SUN under different SZAs, and the circles stand for the values on model pressure levels.
[Figure omitted. See PDF]
In order to ensure measurement quality and enough sample points for further concentration comparisons, we select five measurement dates (1, 3, 4, 6 and 10 July) with relatively good measurement qualities (from fair, “++”, to very good, “++++”) based on . The pressure-dependent column sensitivities for (Fig. b) and (Fig. c) are derived from measurements performed in Lindenberg on 4 July (the best-quality day in terms of measurements). Details about the measurements can be found in and . The shape and values of the column sensitivities from Lindenberg in Berlin closely resemble the results of in Pasadena. As depicted in Fig. a, the SZAs are almost identical for each day in our study (at each hour), rendering the shape of column sensitivities (at a specific hour of the day) practically independent of the measurement date. The column sensitivities for 4 July (Fig. b, c) are taken as a basis for our smoothing process below. The a priori and profiles have been taken from the Whole Atmosphere Community Climate Model (WACCM) version 6. A smoothed profile for a target gas is then obtained as in Eq. (3) in , 3 where is the modeled profile from WRF-GHG, is the identity matrix, is a diagonal matrix containing the averaging kernel and is the a priori profile.
In order to compare the simulated smoothed concentration fields with the observations, the simulated smoothed pressure-weighted column-averaged concentration for a target gas () is calculated as 4 Here, is proportional to the differences of the pressure values at the bottom and at the top of the th vertical grid cell, and represent the hydrostatic pressures at the top and at the surface of the model domain, and stands for the simulated concentration of the target gas at the th vertical level.
In Figs. and of Appendix D, we compare the simulated and with and without smoothing. The simulated concentrations are only slightly enlarged after smoothing, at approximately 1–2 ppm for and 2 ppb for , while the variations are mostly unchanged. Compared to the period with lower SZAs (at noon), the smoothed values in the morning and afternoon with higher SZAs hold relatively larger enlargements.
Figure a shows the measured and smoothed modeled variations in and for these 5 d. Compared to the measurements, the smoothed simulated pressure-weighted column-averaged concentrations for () show quite similar trends but with approximately 1–2 ppm bias, indicated by an RMSE of 1.2534 ppm. The simulated values are overestimated for 1, 3 and 4 July, while on 6 and 10 July, the model is underestimated, which could be the result of uncertainties from the coarse anthropogenic surface emission fluxes, background concentrations from CAMS and the ignorance of the influence from the line of sight of the sun.
Figure b shows the comparison of the pressure-weighted column-averaged concentrations for () between observations and smoothed simulations on the five selected dates (1, 3, 4, 6 and 10 July). We find that there is an approximate offset of 50–60 ppb between observations and models (RMSE is 58.1082 ppb). The simulated is around 1860 ppb while the measured value is around 1810 ppb, which is comparable to the values (1790–1810 ppb) observed at two Total Carbon Column Observing Network (TCCON) measurement sites in June and July 2014 in Bremen in Germany and Bialystok in Poland . This bias of the simulated seems to be constant (around 2.7 %) each day. Thus, we introduce an offset applied to all sites for each simulation date to compare the model and the measured data, effectively removing the bias, which we attribute to too high a background . The daily offset is assumed to be the difference between the smoothed simulated and measured daily mean . After applying the daily offset, the measured shows a somewhat better agreement and a similar trend but with larger variability compared to the simulation (RMSE is 3.1690 ppb). The smaller variations from the simulation results can, for example, be caused by the error from the spatio-temporal treatment of emission maps, underestimated emissions from anthropogenic activities, the coarse wind data and/or the smoothing of actual extreme values in the simulation.
Figure 4Variations of the measured and smoothed simulated (a) and (b) , on 1, 3, 4, 6 and 10 July 2014, for five sampling sites in Berlin: Charlottenburg (Charl: black markers), Heiligensee (Heili: purple markers), Lichtenrade (Licht: green markers), Lindenberg (Lind: blue markers) and Mahlsdorf (Mahls: red markers). The solid circles in (a) and (b) stand for the simulated values provided by WRF-GHG, and the dashed lines represent the measured concentrations. The solid circles represent the simulated after the subtraction of the daily offset in (c).
[Figure omitted. See PDF]
A major offset in modeled concentration fields could potentially be attributed to the errors in the troposphere height and a general offset from CAMS. In the vertical concentration profile, we find that the typical sharp decrease occurs at the tropopause height. also find the similar sharp decrease when using the AirCore to retrieve atmospheric profiles in Finland. During the simulation, the background concentration values of CAMS are directly fitted to the WRF pressure axis without considering the actual tropopause height; thus this could cause some error. An illustration of the vertical distribution for is provided in Appendix C. In contrast, the vertical distribution shows decrease that is quite flat with the increase in pressure, and there is no need to consider the tropopause height during the grid treatment in the vertical layer. In terms of CAMS, the reports from Monitoring Atmospheric Composition and Climate (MACC) stated that CAMS has a bias and RMSE (approximately 50 ppb) in each part of the world, compared to the Integrated Carbon Observation System (ICOS) observations in 2017 . also mentioned one offset (approximately 30 ppb within troposphere) when initializing the concentration fields using CAMS. Apart from these two major potential reasons for the bias, the influence from the inaccurate simulated planetary boundary layers and the shape of the constant a priori profile used for the retrievals could both potentially contribute to the discrepancies for the concentration fields. Due to the lack of fine measured vertical concentration profiles, it is not easy to quantify these errors and attribute these potential reasons to this 2.7 % error quantitatively. Thus, a DCM-based analysis is presented in Sect. , aiming at eliminating the bias from these relatively high initialization values for and making it easier to assess WRF-GHG results with respect to the measurements.
3.4 Contributions of different sources and sinks to the total signal: individual emission tracersAs described in Sect. , the various flux models implemented in WRF-GHG are advected as separate tracers, making it possible to distinguish the signals in concentration space for different source and sink categories for and . Berlin is located in an area of low-lying, marshy woodlands with a mainly flat topography . There is no wetland in Berlin according to the MODIS Land Cover Map . The land covered by forests, green and open spaces (e.g., farmlands, parks and allotment gardens) accounts for 35 % of the total area in Berlin . Additionally, 11 power plants are currently being operated in Berlin, 8 of which have a capacity of over 100 MW . In accordance with the geographical characteristics of the district and potential emission sources in Berlin, we focus on understanding the major emissions caused by vegetation photosynthesis and respiration () as well as anthropogenic activities () for and by soil uptake () as well as human activities () for .
Figure 5
The diurnal variations in the simulated changes in concentrations caused by different emission tracers in Charlottenburg in Berlin from 2014, averaged over a period of 9 d (from 2 to 10 July 2014). The colored lines represent the concentration changes and the mean enhancement over background. (a) The mean hourly (green line) and (black line). (b) The mean hourly (black line) and (blue line). The red box in (a) marks the morning peak of the enhancement over the background, as described in Sect. 3.4.
[Figure omitted. See PDF]
As an instructive example of an analysis involving these tracers, we look at the diurnal cycle of contributions from the different tracers mentioned above in Charlottenburg (Fig. ). The mean values, averaged over 9 d (from 2 to 10 July), as well as a 95 % confidential interval calculated in the averaging process are shown in Fig. . Figure a clearly shows a decline during the day and a rise at night in the enhancement over the background (blue: – ), with a maximum decrease over the course of the day of around 2 ppm. The enhancement over the background reaches its daily peak during morning rush hour (07:00 UTC). The morning peak corresponds to changes from human activities, depicted by the black line from 04:00 to 07:00 UTC (marked by a red square in Fig. a). Before the evening rush hour (16:00 UTC), over the background then decreases, owning to biogenic uptake. Beginning in the evening, values increase again. The fluctuation in the evening (17:00–19:00 UTC) is dominated by enhancements from human activities, while the substantial rise from 19:00 UTC onward is generated by the VPRM tracer, specifically the accumulation of the vegetation respiration in the evening.
is weaker compared to the strong biogenic uptake. To further highlight the role of anthropogenic activities in changes within the urban area, DCM is applied in Sect. . More specifically, we will use downwind-minus-upwind column differences of () to describe the enhancement over an upwind site, as the difference between the downwind and upwind sites can be attributed to urban emissions.
Figure 6Detailed locations of the five sampling sites. The five red stars stand for the five sampling sites, four of which (Mahlsdorf, Heiligensee, Lindenberg and Lichtenrade) were roughly situated along a circle with a radius of 12 km around the center of Berlin, marked as the black circle. The innermost domain of our WRF-GHG model contains all five measurement sites. The three wind measurement sites are marked by red circles. Map provided by © Google Earth, © GeoBasis DE/BKG and © Europa Technologies.
[Figure omitted. See PDF]
Turning to in Fig. b, we plot the variations in the mean hourly contributions from the anthropogenic (black line: ) and soil uptake tracer (blue line: ) in Charlottenburg. The contributions by anthropogenic activities fluctuate slightly around 2 ppb in the morning and at noon; then a peak occurs at the start of the evening rush hour (16:00 UTC). After 18:00 UTC, values clearly decrease, reaching approximately 2 ppb. From 21:00 UTC, stabilizes, exhibiting only moderate fluctuations. The enhancement above the background (green: ) depends largely on the contributions by human activities. The changes in concentrations caused by the soil uptake tracer (blue), whose values fluctuate between 0.001 and 0.01 ppb, have almost no influence on the variation in the enhancement over the background in the urban area.
4 Model analysis using differential column methodology4.1 Comparison of differential column concentrations
The DCM can be employed to detect and estimate local emission sources within an area, based on calculated concentration differences between downwind and upwind sites . The difference () of a specific gas in column-averaged DMFs across the downwind and upwind sites is defined as
5 where and represent the column-average DMFs at the downwind and upwind sites.
In this study, DCM is applied to measurements and models in the spirit of a post-processing analysis. This approach is not only useful for canceling out the bias of the simulated (see Sect. 3.3) but also for assessing the role of anthropogenic activities in changes more appropriately.
A necessary prerequisite for DCM is distinguishing the upwind and downwind sites among all five sampling sites. Wind direction thus plays a pivotal role in the calculation of the downwind-minus-upwind column differences. In this study, the hourly simulated vertically averaged wind directions are assumed as a standard to classify the sites into downwind and upwind sites. The tracer transport calculations in the first few hours are not stable in WRF-GHG. Thus, we select 3, 4, 6 and 10 July as our targeted dates.
Table 1The selections of upwind and downwind sites for four dates
Date | Wind direction (degree) | Upwind sites | Downwind sites |
---|---|---|---|
3 July | Charlottenburg–Heiligensee | Lindenberg–Mahlsdorf | |
4 July | Lichtenrade | Heiligensee–Lindenberg | |
6 July | Lichtenrade | Heiligensee–Lindenberg | |
10 July | Mahlsdorf–Lindenberg | Heiligensee–Charlottenburg |
Wind directions are the mean of the hourly vertically averaged wind directions for 1 d.
Figure 7Modeled wind fields for downwind (blue lines) and upwind (red lines) sites (a–d), and downwind-minus-upwind differential evaluation for measured (blue) and simulated (black lines) (e–h) on 3, 4, 6 and 10 July 2014. Based on the selection of downwind and upwind sites in Table 1, is calculated using Eqs. (6), (7) and (8), depicted by blue lines for measurements and black lines for simulations. The black error bars in (e–h) are the standard derivations of the minute values of the hourly mean.
[Figure omitted. See PDF]
Table 1 shows the daily averaged wind directions with standard derivations and the details on the downwind and upwind sites for these four target dates. West wind is the prevailing wind direction on 3 July. That is to say, Mahlsdorf and Lindenberg are downwind sites, and the upwind sites corresponding to these are Charlottenburg and Heiligensee, described in Eq. (6). The wind on 10 July is northeasterly, and the combination of downwind and upwind sites are selected to be opposite of the ones on 3 July, see Eq. (8). The prevailing winds on 4 and 6 July are easterly. The upwind site is Lichtenrade, and the corresponding downwind sites are Heiligensee and Lindenberg, see Eq. (7). Based on the selection of downwind and upwind sites shown in Table 1 and Eq. (5), differential column concentrations () are, therefore, calculated as Figure depicts the variations in the wind fields (wind speeds and wind directions) and (corresponding to Eqs. 6, 7 and 8) on 3, 4, 6 and 10 July. As depicted in the Fig. a–d, the hourly vertically averaged simulated wind speeds and directions at downwind and upwind sites are homogeneous. Thus, it is reasonable to use the daily mean wind directions as the standard for the selection of downwind and upwind sites. The general trends in the simulated values, shown in Fig. e–h, seem to be roughly reproduced by the observations but slightly overestimated, with an RMSE of 1.3895 ppb.
Yet DCM as presented here has the potential to highlight the role of anthropogenic activities, which we demonstrate, applying it to tracers in the simulation. Thus, the analysis on anthropogenic and biogenic tracers for will be especially prominent here. As described above, we continue to take 3, 4, 6 and 10 July as examples (see Fig. a–d).
Figure 8Measured (black lines) and simulated (blue lines) on 3, 4, 6 and 10 July 2014, and comparison of hourly mean and for these 4 d. The , calculated using Eqs. (6), (7) and (8), are depicted by blue lines in (a–d). The red and green lines show the variation in the differences between downwind and upwind sites in changes from anthropogenic and biogenic activities, respectively. The points in (e–f) are coded by the difference of the simulated and measured wind directions at 10 m. The black error bars in (a–d) are the standard derivations of the minute values of the hourly mean.
[Figure omitted. See PDF]
The variations in (corresponding to Eqs. 6, 7 and 8) on 3, 4, 6 and 10 July are shown. In contrast to the variations in values (Sect. 3.4; Fig. a), the simulated (Fig. a–d, blue lines) is not so much influenced by the changes from the VPRM tracer (Fig. a–d, green) but more closely follows the changes from anthropogenic activities (Fig. a–d, red). With DCM, the role of human activities in changes is highlighted, and the strong effect from the biogenic component is canceled out. The measurements (Fig. a–d, black) show similar trends as the simulation with an RMSE of 0.2973 ppm.
To further understand the differences of and between measurements and simulations (see Fig. e–h and Fig. a–d), the comparison of hourly mean and values for these four targeted dates is illustrated in the right column of Fig. . Due to the restriction of measured wind information, we illustrate the differences of simulated and measured wind directions at 10 m (i.e., Fig. b) with respect to the hourly mean and . We find that the real hourly mean and values are generally higher than the simulated values. Extreme points are colored by red and blue in the right column of Fig. e–f, standing for large differences between measured and simulated wind directions at 10 m. We see that a large difference of wind directions is a necessary but insufficient condition for the bias of and between measurements and simulations. In future studies, this is suggested as something to be verified further.
We conclude that DCM, as applied in this plot, reduces the model bias caused by the simulation initialization but introduces unpleasant effects which may be attributed to errors in the assumed or simulated wind directions.
4.2 Comparison between differential column concentrations and modeling results after the elimination of wind influenceAs described in Sect. 4.1, the wind direction impacts the distinction between downwind and upwind sites for DCM. Devising meaningful and accurate recipes for determining the wind directions is not easy, sometimes resulting in mixed-quality results (of Sect. 4.1). Our simulated output provides the hourly wind and concentration fields. The instruments measure the concentration value every minute . We simply assume the wind direction to be a constant value within 1 h (the hourly vertically averaged values) in our calculation also when it comes to selecting upwind and downwind sites. This may create inaccuracies in the calculation of the measured .
Figure 9
Modeled (blue lines) and observed (black lines) site vs. site-mean data for five sampling sites: Charlottenburg (a: Char), Heiligensee (b: Heili), Lindenberg (c: Lind), Lichtenrade (d: Licht) and Mahlsdorf (e: Mahls). The black error bars in each subplot are the standard derivations of the minute values of the hourly mean.
[Figure omitted. See PDF]
In this section, we test replacing the upwind values in DCM by an all-site mean to provide a potential solution for the elimination of such problems while still applying the DCM. The mean of the column-averaged DMFs over all sampling sites () is assumed to be the background concentration within the entire urban region, replacing the at the upwind site. The differences between the specific site and the mean of all the sites for each gas () is then evaluated, i.e., 9 where is the column-averaged DMF at the respective sampling site.
We now test this form of DCM for the same four targeted dates (3, 4, 6 and 10 July). The distance between any two sampling sites is around 25 km. The general trends of the simulated (Fig. , blue lines) and measured (Fig. , black lines) values appear to be more similar with an RMSE of 0.6698 ppb compared to the comparison of in Fig. e–h (RMSE of 1.3895 ppb). The model–measurement bias can be caused by underestimated emissions from anthropogenic activities, the smoothing of actual extreme values in the simulation and the ignorance of the line of the sun sight for the simulation. The variations in the at the five different sampling sites on the same day are similar (Fig. ), but the measurements show more extreme values (e.g., 4 July) compared to the simulations. A further analysis in a future study is suggested to provide deeper insight into site-specific transport characteristics.
As a final point in our analysis, we focus on simulated values for these four target dates (Fig. ). The values (blue line) on 3, 4, 6 and 10 July in five sampling sites are mainly dominated by the changes caused by the anthropogenic tracer (red) instead of the VPRM tracer (green). Compared to Fig. a–d, the red line and blue line in Fig. show a stronger similarity in their trends. With this form of DCM (compared to the original form Eq. 5 in Sect. 4.1), anthropogenic activities can be clearly shown to influence within urban areas. Meanwhile, the measurements (black lines) fit better with the simulation with an RMSE of 0.2333 ppm compared to the comparisons of depicted in Fig. a–d (RMSE of 0.2973 ppm).
5 Discussion and conclusionWe used WRF-GHG to quantitatively simulate the uptake, emission and transport of and for Berlin with a high resolution of 1 km. The simulated wind and concentration fields were compared with observations from 2014. Then, differential column methodology (DCM) was utilized as a post-processing method for the comparison and the tracer analysis.
Figure 10
(blue lines for simulations and black for measurements) for five sampling sites (i.e., the difference between at the site and the mean of five sampling sites): Charlottenburg (a: Char), Heiligensee (b: Heili), Lindenberg (c: Lind), Lichtenrade (d: Licht) and Mahlsdorf (e: Mahls). We furthermore show the differences in the simulated changes from biogenic (green lines) and anthropogenic (red lines) activities. The black error bars in each subplot are the standard derivations of the minute values of the hourly mean.
[Figure omitted. See PDF]
The measured and simulated wind fields at 10 m mostly demonstrate good agreement, but with slight errors in the wind directions. The simulated pressure vertical profile and the averaging kernel from the solar-viewing spectrometer (EM27/SUN) are used to obtain the smoothed pressure-weighted average concentration for further comparisons. The simulated concentrations actually reproduce the observations well, but with approximately 1–2 ppm bias, which can be attributed to the coarse emission inventory, background concentrations from CAMS and the ignorance of the line of the sun sight for the simulation. Compared to the measured , some deviations can clearly be noted in the simulated , mostly caused by the relatively high background concentration fields and the errors at the tropopause height. We discussed the diurnal variation in concentration components corresponding to the major emission tracers for both and . The biogenic component plays a pivotal role in the variations in . The impact from anthropogenic emission sources is somewhat weak compared to this, while the enhancement is dominated by human activities.
We then concentrated on using DCM for focusing our analysis on relevant and contributions from the urban area. DCM highlights that the enhancement of over the background within the inner Berlin urban area is mostly caused by anthropogenic activities. In DCM, wind direction plays a vital role in defining the upwind and downwind sites, which directly influence the calculation of differential column concentrations. In the tracer analysis, it turns out that , the difference with respect to a mean value instead of a specific upwind site, exhibits a more visible and clearer trend, which proves that the enhancement is dominated by anthropogenic activities within the urban area. We conclude that DCM, when applied with care, helps in highlighting the relevant emission sources. Similarly, for , DCM eliminates the bias of the simulated values. Furthermore, when values suffer from inconsistent wind directions, we consider to be a useful quantity for analysis.
An analysis of in the Paris hotspot region was carried out by . Some of their results can be compared to the conclusions we drew in this paper. In , the modeled was calculated based on the chemistry transport model CHIMERE (2 km) and flux framework CAMS (15 km), with hourly anthropogenic emissions from the IER (Institut für Energiewirtschaft und Rationelle Energieanwendung; University of Stuttgart, Germany) and EDGAR emission inventories and the natural fluxes prescribed by the CTESSEL model (Sect. 2 in ). When comparing results from our simulation, the diurnal variation in the enhancement over the background (Sect. 3.4 and Fig. a of our paper) is comparable to the findings of . For the analysis on the comparison of between simulations and measurements in Sect. 4.1, we found that negative column concentration differences between downwind and upwind sites appear for some periods, owing to the variation in wind directions that causes the conversion of upwind and downwind sites, which was also mentioned for the analysis in . Based on the CHIMERE-CAMS modeling framework, they showed that the strong decrease in during daytime can be linked to net ecosystem exchange, while a significant enhancement compared to the background is caused by from fossil-fuel emissions, but this is often compensated by net ecosystem exchange. We utilized DCM to bring out the role of anthropogenic activities within urban areas (see the tracer analysis in Sect. of our paper).
We conclude that WRF-GHG is a suitable model for precise GHG transport analysis in urban areas, especially when combined with DCM. DCM is not only useful for the direct evaluation of measurements but also helps us to understand the results of tracer transport models, canceling out the bias caused by initialization conditions, for example, and highlighting regional emission sources. This case is a fundamental study for the WRF-GHG mesoscale modeling framework. Emission flux estimations using WRF-GHG would be our further target to be demonstrated for the case of Munich. This Munich case is combined with the first worldwide permanent column measurement network designed in Munich. Various emission tracers will be run for this case in which more emission tracers (e.g., biogenic emissions from wetland for , traffic emission and strong point source emissions in urban areas) are being separated and analyzed using the longer time period of available measurements.
In future work, we suggest running WRF-GHG for more urban areas such that, for example, different transport, more emission tracers, topography, emission scenarios and the quantification of model errors can be studied. The influence from the line of the sun sight should be taken into account, and the relative sensitivity analysis is suggested. The WRF-GHG mesoscale simulation framework may also be combined with microscale atmospheric transport models to simulate crucial details of emission sources and transport patterns precisely, with the aim of tracing urban GHG emissions. A further promising direction for future studies may be the application of DCM and model-based analysis to satellite measurements to assess gradients across column concentrations with a dense spatial sampling.
Data availability
The simulation data that support the findings of this study are available on request from the corresponding author. The measurement data are available at 10.5194/amt-8-3059-2015 .
Appendix A WRF-GHG running processA detailed description on how to run WRF-GHG is provided in , and thus, only the initialization process for our study in particular is summarized here. One daily simulation with WRF-GHG is normally performed for a 30 h time period, including a 6 h spin-up for the meteorology from 18:00 to 24:00 UTC of the previous day and a 24 h simulation of the tracer transport on the actual simulation day .
As for the boundary conditions, a small constant offset needs to be added into the WRF boundary files for the biospheric and the soil sink tracers at the start of each run because these tracers can result in a net sink. When the concentrations become negative, the advected tracer fields will “disappear”, as the WRF code does not allow tracers with negative values. An offset applied in the initialization process helps to avoid this problem and later is subtracted in the post-processing. As for the initial conditions, the meteorological conditions are initialized with external data sources (GFS in our model) each day to update the WRF meteorological fields properly. The tracers for the total and background and flux fields are initialized only once, at the first day of the simulation period, using CAMS as an external data source. Furthermore, the lateral boundary conditions of the outer domain d01 are also initialized by the CAMS. Then, for the other days within the simulation period, these tracers for the total and background and fluxes are directly taken from the final WRF output at 24:00 UTC of the previous day to make the entire simulation continuous. The tracer for VPRM and the tracer for soil uptake are also initialized with a constant offset to avoid the appearance of negative values caused, for example, by the vegetation respiration . In terms of the other flux tracers, the tracer variables are initialized each day, using external data sources to provide the updated emission data for each tracer.
Appendix B Model systematic equation errors for Eq. (1)
In the passive tracer transport simulation, the total concentration of each GHG is represented as a separate tracer, giving redundant information (with respect to the sum of all tracers for each GHG) and allowing for consistency checks. A variety of flux models and emission inventories implemented in the modules of WRF-GHG are used for the estimation of GHG fluxes. The flux values from external emission inventories are gridded and absorbed into the model. In the transport process, the relationship among the changes in concentrations from different emission tracers, the total and background concentrations (Eq. 1) should then be satisfied, ideally with and computational errors during the simulation process being zero. Nonzero values of and reflect the limited precision of the tracer transport calculation in WRF-GHG.
Figure B1
The mean values (solid lines) and the 95 % confidence intervals of the computational error (a) and (b). and are calculated using Eq. (1).
[Figure omitted. See PDF]
Figure thus shows the mean values (solid lines) and the 95 % confidence intervals of and . As depicted in the figure, ranges from to 0.01 ppm, while is in the range of to 0.02 ppb. Divided by typical absolute values of the concentrations from different flux processes for (around 1 ppm) and (around 2–3 ppb) depicted in Fig. , the relative computational error is found to be % for both and .
These tiny computational errors can be caused by the slight non-linearity of the advection scheme used in the WRF-GHG model, which makes the sum of the concentrations in and from all individual flux tracers not exactly equal to the concentration from the sum tracer, representing the total sum of all fluxes related to different processes.
Appendix CThe vertical distribution of in CAMS
Figure C1The vertical distribution of on 2 July in Charlottenburg. The asterisks represent the field from CAMS. The vertical dashed lines show the values of atmospheric pressure corresponding to the 26 vertical levels in our WRF-GHG. axis levels of 1800 and 1860 ppb, corresponding to the total column measurement and the modeled value, respectively, have been marked by red horizontal (solid and dashed) lines.
[Figure omitted. See PDF]
Appendix DAccounting for instrumental limitations in comparison of measured to simulated and
Figure D1Comparison of from WRF-GHG with and without smoothing (using our column sensitivities for EM27/SUN) for the first four simulated dates. The five colors stand for the concentrations from five sample sites. Dotted lines with the crosses represent the without smoothing, while solid lines with the circles stand for the smoothed values.
[Figure omitted. See PDF]
Figure D2Comparison of from WRF-GHG with and without smoothing (using our column sensitivities for EM27/SUN) for the first four simulated dates. The five colors stand for the concentrations from five sample sites. Dotted lines with the crosses represent the without smoothing, while solid lines with the circles stand for the smoothed values.
[Figure omitted. See PDF]
Appendix E The vertical wind profiles for wind speeds and wind directions Figure E1The vertical distribution of wind fields (wind speeds and wind directions) on 3 July (a, b) and 4 July (c, d) in Tegel. The colors from black to blue represent the time from morning to evening.
[Figure omitted. See PDF]
Author contributions
XZ performed the simulations, with the support and guidance of JM, CG, JC and SH. JM provided the CAMS fields for the initialization. JC supplied the anthropogenic emission source, and CG offered the VPRM used for the simulations. MF and FH provided the measurement data for Berlin in 2014 and fruitful discussions related to the measurements. SH provided the guidance related to the running of the simulations in the Linux cluster. XZ, JC and SH designed the computational framework. XZ and JC performed the analysis of the results. XZ wrote the paper, with input from all authors. All authors provided critical feedback and helped shape the research, analysis and paper.
Competing interests
The authors declare that they have no conflict of interest.
Acknowledgements
We thank the personal contribution from Michal Galkowski from the Max Planck Institute for Biogeochemistry for the biogenically related flux estimates. The a priori concentration profiles from the Whole Atmosphere Community Climate Model (WACCM) were provided by James W. Hannigan (NCAR). Jia Chen is partly supported by the Technical University of Munich Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763. The simulations presented in this work have been run on the Linux cluster (CooLMUC-2) of the Leibniz Supercomputing Centre (LRZ; Garching). We acknowledge support by the ACROSS research infrastructure of the Helmholtz Association.
Financial support
The article processing charges for this open-access publication were covered by the Max Planck Society.
Review statement
This paper was edited by Stefano Galmarini and reviewed by two anonymous referees.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Though they cover less than 3 % of the global land area, urban areas are responsible for over 70 % of the global greenhouse gas (GHG) emissions and contain 55 % of the global population. A quantitative tracking of GHG emissions in urban areas is therefore of great importance, with the aim of accurately assessing the amount of emissions and identifying the emission sources. The Weather Research and Forecasting model (WRF) coupled with GHG modules (WRF-GHG) developed for mesoscale atmospheric GHG transport can predict column-averaged abundances of
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Electrical and Computer Engineering, Technische Unversität München, Arcisstr. 21, 80333 Munich, Germany
2 Department of Biogeochemical Systems, Max Planck Institute of Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
3 Leibniz Supercomputing Centre (Leibniz-Rechenzenturm – LRZ), Bavarian Academy of Sciences and Humanities, Bolzmannstr. 1, 85748 Garching, Germany
4 Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76021 Karlsruhe, Germany