Full Text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Interannual variability in desert dust is widely observed and simulated, yet the sensitivity of these desert dust simulations to a particular meteorological dataset, as well as a particular model construction, is not well known. Here we use version 4 of the Community Atmospheric Model (CAM4) with the Community Earth System Model (CESM) to simulate dust forced by three different reanalysis meteorological datasets for the period 1990–2005. We then contrast the results of these simulations with dust simulated using online winds dynamically generated from sea surface temperatures, as well as with simulations conducted using other modeling frameworks but the same meteorological forcings, in order to determine the sensitivity of climate model output to the specific reanalysis dataset used. For the seven cases considered in our study, the different model configurations are able to simulate the annual mean of the global dust cycle, seasonality and interannual variability approximately equally well (or poorly) at the limited observational sites available. Overall, aerosol dust-source strength has remained fairly constant during the time period from 1990 to 2005, although there is strong seasonal and some interannual variability simulated in the models and seen in the observations over this time period. Model interannual variability comparisons to observations, as well as comparisons between models, suggest that interannual variability in dust is still difficult to simulate accurately, with averaged correlation coefficients of 0.1 to 0.6. Because of the large variability, at least 1 year of observations at most sites are needed to correctly observe the mean, but in some regions, particularly the remote oceans of the Southern Hemisphere, where interannual variability may be larger than in the Northern Hemisphere, 2–3 years of data are likely to be needed.

Details

Title
Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset
Author
Smith, Molly B 1 ; Mahowald, Natalie M 2 ; Albani, Samuel 3 ; Perry, Aaron 2 ; Losno, Remi 4   VIAFID ORCID Logo  ; Qu, Zihan 5 ; Marticorena, Beatrice 6 ; Ridley, David A 7   VIAFID ORCID Logo  ; Heald, Colette L 7   VIAFID ORCID Logo 

 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA; Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA 
 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA 
 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA; Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France 
 Institut de Physique du Globe de Paris, University of Paris Diderot, USPC, CNRS – UMR7154, Paris, France 
 Institut de Physique du Globe de Paris, University of Paris Diderot, USPC, CNRS – UMR7154, Paris, France; LISA, Universites Paris Est-Paris Diderot-Paris 7, CNRS – UMR7583, Creteil, France 
 LISA, Universites Paris Est-Paris Diderot-Paris 7, CNRS – UMR7583, Creteil, France 
 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Massachusetts, MA 02139, USA 
Pages
3253-3278
Publication year
2017
Publication date
2017
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414565510
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.