Full Text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.

Details

Title
Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis
Author
Buchard, V 1 ; da Silva, A M 2 ; Colarco, P R 2   VIAFID ORCID Logo  ; Darmenov, A 2 ; Randles, C A 3 ; Govindaraju, R 4 ; Torres, O 2 ; Campbell, J 5   VIAFID ORCID Logo  ; Spurr, R 6 

 NASA/Goddard Space Flight Center, Greenbelt, MD, USA; GESTAR/Universities Space Research Association, Columbia, MD, USA 
 NASA/Goddard Space Flight Center, Greenbelt, MD, USA 
 NASA/Goddard Space Flight Center, Greenbelt, MD, USA; GESTAR/Morgan State University, Baltimore, MD, USA 
 NASA/Goddard Space Flight Center, Greenbelt, MD, USA; Science Systems and Applications, Inc., Lanham, MD, USA 
 Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA 
 RT Solutions, Inc., 9 Channing Street, Cambridge, MA 02138, USA 
Pages
5743-5760
Publication year
2015
Publication date
2015
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414652889
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.