Full text

Turn on search term navigation

© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigates the formation and evolution of deep convection inside the east–west oriented rainbands associated with a low-level jet (LLJ) in Typhoon Morakot (2009). With the typhoon center to the northwest of Taiwan, the westerly LLJ occurred as a result from the interaction of typhoon circulation with the southwest monsoon flow, which supplied the water vapor for the extreme rainfall (of 1000 mm) over southwestern Taiwan. The Cloud-Resolving Storm Simulator with 1 km grid spacing was used to simulate the event, and it successfully reproduced the slow-moving rainbands, the embedded cells, and the dynamics of merger and back-building (BB) on 8 August as observed. Our model results suggest that the intense convection interacted strongly with the westerly LLJ that provided reversed vertical wind shear below and above the jet core. Inside mature cells, significant dynamical pressure perturbations (pd) are induced with positive (negative)pd at the western (eastern) flank of the updraft near the surface and a reversed pattern aloft (> 2 km). This configuration produced an upward-directed pressure gradient force (PGF) to the rear side and favors new development to the west, which further leads to cell merging as the mature cells slowdown in eastward propagation. The strong updrafts also acted to elevate the jet and enhance the local vertical wind shear at the rear flank. Additional analysis reveals that the upward PGF there is resulted mainly by the shearing effect but also by the extension of upward acceleration at low levels. In the horizontal, the upstream-directed PGF induced by the rear-side positive pd near the surface is much smaller, but can provide additional convergence for BB development upstream. Finally, the cold-pool mechanism for BB appears to be not important in the Morakot case, as the conditions for strong evaporation in downdrafts do not exist.

Details

Title
A numerical study of convection in rainbands of Typhoon Morakot (2009) with extreme rainfall: roles of pressure perturbations with low-level wind maxima
Author
C-C, Wang 1 ; H-C Kuo 2 ; Johnson, R H 3 ; C-Y, Lee 2 ; S-Y, Huang 1 ; Y-H, Chen 2 

 Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan 
 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan 
 Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA 
Pages
11097-11115
Publication year
2015
Publication date
2015
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414653865
Copyright
© 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.