Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Some benthic foraminifera have the ability to incorporate functional chloroplasts from diatoms (kleptoplasty). Our objective was to investigate chloroplast functionality of two benthic foraminifera (Haynesina germanica and Ammonia tepida) exposed to different irradiance levels (0, 25, 70 µmol photon m-2 s-1) using spectral reflectance, epifluorescence observations, oxygen evolution and pulse amplitude modulated (PAM) fluorometry (maximum photosystem II quantum efficiency (Fv/Fm) and rapid light curves (RLC)). Our results clearly showed that H. germanica was capable of using its kleptoplasts for more than 1 week while A. tepida showed very limited kleptoplastic ability with maximum photosystem II quantum efficiency (Fv/Fm = 0.4), much lower than H. germanica and decreasing to zero in only 1 day. Only H. germanica showed net oxygen production with a compensation point at 24 µmol photon m-2 s-1 and a production up to 1000 pmol O2 cell-1 day-1 at 300 µmol photon m-2 s-1.Haynesina germanica Fv/Fm slowly decreased from 0.65 to 0.55 in 7 days when kept in darkness; however, it quickly decreased to 0.2 under high light. Kleptoplast functional time was thus estimated between 11 and 21 days in darkness and between 7 and 8 days at high light. These results emphasize that studies about foraminifera kleptoplasty must take into account light history. Additionally, this study showed that the kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply from foraminifera food source. The advantages of keeping functional chloroplasts are discussed but more information is needed to better understand foraminifera feeding strategies.

Details

Title
Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida)
Author
Jauffrais, Thierry 1 ; Bruno, Jesus 2 ; Metzger, Edouard 3 ; Mouget, Jean-Luc 4 ; Jorissen, Frans 3 ; Geslin, Emmanuelle 3 

 UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France; These authors contributed equally to this work 
 EA2160, Laboratoire Mer Molécules Santé, 2 rue de la Houssinière, Université de Nantes, 44322 Nantes CEDEX 3, France; BioISI – Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, 1749-016 Lisboa, Portugal; These authors contributed equally to this work 
 UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France 
 EA2160, Laboratoire Mer Molécules Santé, Université du Maine, Ave O. Messiaen, 72085 Le Mans CEDEX 9, France 
Pages
2715-2726
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414772942
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.