Full Text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The flow duration curve (FDC) is a fundamental signature of the hydrological cycle to support water management strategies. Despite many studies on this topic, its estimation in ungauged basins is still a relevant issue as the FDC is controlled by different types of processes at different time-space scales, thus resulting quite sensitive to the specific case study.

In this work, a regional spatially-smooth procedure to evaluate the annual FDC in ungauged basins is proposed, based on the estimation of theL-moments (mean, L-CV and L-skewness) through regression models valid for the whole case study area. In this approach, homogeneous regions are no longer required and the L-moments are allowed to continuously vary along the river network, thus providing a final FDC smoothly evolving for different locations on the river. Regressions are based on a set of topographic, climatic, land use and vegetation descriptors at the basin scale. Moreover, the model ensures that the mean annual runoff is preserved at the river confluences, i.e. the sum of annual flows of the upstream reaches is equal to the predicted annual downstream flow.

The proposed model is adapted to incorporate different “sub-models” to account for local information within the regional framework, where man-induced alterations are known, as common in non-pristine catchments. In particular, we propose a module to consider the impact of existing/designed water withdrawals on the L-moments of the FDC.

The procedure has been applied to a dataset of daily observation of about 120 gauged basins on the upper Po river basin in North-Western Italy.

Details

Title
Spatially-smooth regionalization of flow duration curves in non-pristine basins
Author
Ganora, Daniele 1   VIAFID ORCID Logo  ; Laio, Francesco 1 ; Masoero, Alessandro 1 ; Claps, Pierluigi 1 

 Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering, Torino, Italy 
Pages
73-80
Publication year
2016
Publication date
2016
Publisher
Copernicus GmbH
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2414786437
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.