Full text

Turn on search term navigation

Copyright © 2020 Tien Pham Van et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Increasingly inexpensive unmanned aerial vehicles (UAVs) are helpful for searching and tracking moving objects in ground events. Previous works either have assumed that data about the targets are sufficiently available, or they solely rely on on-board electronics (e.g., camera and radar) to chase them. In a searching mission, path planning is essentially preprogrammed before taking off. Meanwhile, a large-scale wireless sensor network (WSN) is a promising means for monitoring events continuously over immense areas. Due to disadvantageous networking conditions, it is nevertheless hard to maintain a centralized database with sufficient data to instantly estimate target positions. In this paper, we therefore propose an online self-navigation strategy for a UAV-WSN integrated system to supervise moving objects. A UAV on duty exploits data collected on the move from ground sensors together with its own sensing information. The UAV autonomously executes edge processing on the available data to find the best direction toward a target. The designed system eliminates the need of any centralized database (fed continuously by ground sensors) in making navigation decisions. We employ a local bivariate regression to formulate acquired sensor data, which lets the UAV optimally adjust its flying direction, synchronously to reported data and object motion. In addition, we also construct a comprehensive searching and tracking framework in which the UAV flexibly sets its operation mode. As a result, least communication and computation overhead is actually induced. Numerical results obtained from NS-3 and Matlab cosimulations have shown that the designed framework is clearly promising in terms of accuracy and overhead costs.

Details

Title
Self-Navigating UAVs for Supervising Moving Objects over Large-Scale Wireless Sensor Networks
Author
Pham, Tien, Van 1   VIAFID ORCID Logo  ; Nguyen Pham Van 1   VIAFID ORCID Logo  ; Trung Ha Duyen 2   VIAFID ORCID Logo 

 Department of Communications Engineering, Hanoi University of Science and Technology, Hanoi 844, Vietnam 
 Department of Aerospace Electronics, Hanoi University of Science and Technology, Hanoi 844, Vietnam 
Editor
Zongyu Zuo
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16875966
e-ISSN
16875974
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2417982707
Copyright
Copyright © 2020 Tien Pham Van et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/