Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study reports the ability of magnetic alginate activated carbon (MAAC) beads to remove Cd(II), Hg(II), and Ni(II) from water in a mono-metal and ternary system. The adsorption capacity of the MAAC beads was highest in the mono-metal system. The removal efficiency of such metal ions falls in the range of 20–80% and it followed the order Cd(II) > Ni(II) > Hg(II). The model that best fitted in the ternary system was the Freundlich isotherm, while in the mono-system it was the Langmuir isotherm. The maximum Cd(II), Hg(II), and Ni(II) adsorption capacities calculated from the Freundlich isotherm in the mono-metal system were 7.09, 5.08, and 4.82 (mg/g) (mg/L)1/n, respectively. Lower adsorption capacity was observed in the ternary system due to the competition of metal ions for available adsorption sites. Desorption and reusability experiments demonstrated the MAAC beads could be used for at least five consecutive adsorption/desorption cycles. These findings suggest the practical use of the MAAC beads as efficient adsorbent for the removal of heavy metals from wastewater.

Details

Title
Efficient Separation of Heavy Metals by Magnetic Nanostructured Beads
Author
Lisandra de Castro Alves  VIAFID ORCID Logo  ; Yáñez-Vilar, Susana  VIAFID ORCID Logo  ; Piñeiro-Redondo, Yolanda  VIAFID ORCID Logo  ; Rivas, José  VIAFID ORCID Logo 
First page
40
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2418909397
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.