It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Negative refraction plays an important role in acoustic wave manipulation and imaging. However, conventional systems based on acoustic metamaterials suffer from the limits induced by loss-related and resolution issues. In this work, a parity-time (PT)-symmetric system is introduced to realize loss-free bidirectional acoustic negative refraction. The system is composed of a pair of locally PT-symmetric multi-layer metasurfaces sandwiching a region of free space, which also forms a global PT symmetry. The property of bidirectional negative refraction, which is rare for general PT-symmetric structures, is related to the coexistence of amplification and absorption in the locally PT-symmetric metasurfaces at their PT-broken phases. Such metasurfaces can freely switch their states between coherent perfect absorber (CPA) and amplifier depending on the direction of incidence. Our results provide a physical mechanism for realizing bidirectional functions in acoustic PT-symmetric systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanjing University, Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing, People’s Republic of China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)
2 Nanjing University, Key Laboratory of Modern Acoustics, National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing, People’s Republic of China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)