Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ship-bridge collisions are one of the most common types of accidents, and bridge anti-ship collision devices are of great importance for bridge protection. First, a new type of assembled ultra-high performance concrete (UHPC) collision avoidance is proposed in this paper. The main components of the device are double-deck, two-way, densely reinforced ultra-high performance concrete floating boxes that are connected by high-strength bolts to form the whole structure and are equipped with steel supporting elements to form a collision energy dissipation device. The device is self-floating in water, is strongly energy absorbing due to plastic deformation, has a high degree of toughness, is corrosion resistant, and so on. This device also benefits from modular manufacturing, efficient installation, and easy replacement of damaged parts. Then, in this paper, the main parameters of the new collision avoidance, such as the material of the internal supporting elements, the wall thickness of the floating box, and the reinforcement ratio of the floating box, are optimized. Finally, a performance analysis and evaluation of the UHPC collision avoidance for the Honghe Bridge in Zhuhai City are carried out by using LS-DYNA program. The numerical results show that the new collision avoidance has significant advantages in reducing the ship–bridge collision force, prolonging the ship–bridge collision time, and protecting the ship. The results show that the assembled UHPC collision avoidance system is very effective for protecting ships and bridges in the event of a ship–bridge collision.

Details

Title
Design and Simulation Analysis of a New Type of Assembled UHPC Collision Avoidance
Author
Zhou, Lingyu; Li, Huayong; Wei, Jun; Pu, Xingxu; Mahunon, Akim D  VIAFID ORCID Logo  ; Jiang, Liqiang
First page
4555
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2420019107
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.