(ProQuest: ... denotes formulae omitted.)
ABSTRACT
Context: the financial market has experienced sharp restructuring and mergers in recent decades. As banks expand the scope of their activities, they raise concerns about the impact on the sector's competitiveness. If the characteristics of the financial industry, which contribute to make the sector more concentrated, can make it less competitive, it implies assessing the relationship between concentration and competition. Objective: the general objective of this study is to promote diagnosis of the organization of the national credit market by calculating and analyzing concentration and competition indicators, between 2000 and 2019. Methods: to measure concentration, the Herfindahl-Hirschman and the Five Major Concentration Ratio indexes are used. The degree of competition is estimated via Lerner's econometric model applied to data displayed on a panel with accounting and financial information from financial institutions. Results: the results suggest that although the concentration has increased in the time frame considered, competitiveness has not deteriorated, reinforcing the argument of seminal references that concentration does not necessarily harm competition. Conclusion: in the absence of academic consensus, this work elucidates the relationship between concentration and competitiveness. Still, it gains relevance by pointing out the role of regulation and credit unions in increasing recent competition. The work thus becomes capable of supporting policies that promote contestability, such as initiatives that relax restrictions on the entry of non-banking institutions and financial technology companies.
Keywords: concentration; competition; credit; banks; credit unions.
JEL Code: E5, D4, P1.
RESUMO
Contexto: o mercado financeiro tem vivenciado acentuadas reestruturaçöes e concentraçöes nas últimas décadas. Â medida que os bancos expandem o escopo de suas atividades, levantam preocupaçöes quanto ao impacto sobre a competitividade do setor. Se as características da indústria financeira, que colaboram para tornar o setor mais concentrado, podem torná-la menos competitiva, implica avaliar a relaçâo entre concentraçâo e concorréncia. Objetivo: o objetivo geral deste estudo consiste em promover diagnóstico da organizaçâo do mercado de crédito nacional mediante cálculo e análise de indicadores de concentraçâo e de competiçâo, entre 2000 e 2019. Métodos: para mensurar a concentraçâo, sâo utilizados os índices de Herfindahl-Hirschman e a Razâo de Concentraçâo dos Cinco Maiores. O grau de competiçâo é estimado via modelo econométrico de Lerner aplicado a dados dispostos em um painel com informaçöes contábeis-financeiras de instituiçöes financeiras. Resultados: os resultados sugerem que embora a concentraçâo tenha se elevado no recorte temporal considerado, a competitividade nâo se deteriorou, reforçando o argumento de referencias seminais de que concentraçâo nâo necessariamente prejudica competiçâo. Conclusäo: diante de ausencia de consenso académico, este trabalho elucida a relaçâo entre concentraçâo e competitividade. Ainda, ganha relevancia ao apontar o papel da regulaçâo e das cooperativas de crédito no aumento da concorrencia recente. O trabalho torna-se, assim, passível de apoiar políticas capazes de promover a contestabilidade, como iniciativas que flexibilizem restriçöes â entrada de instituiçöes nâo bancárias e de empresas de tecnologia financeira.
Palavras-chave: concentraçâo; competiçâo; crédito; bancos; cooperativas de crédito
2 Banco Central do Brasil, Brasília, DF, Brazil.
Cite as: Azevedo, M. de A., & Gartner, I. R. (2020). Concentration and competition in the domestic credit market. Revista de Administraçâo Contemporánea, 24(5), 380-399. https://doi.org/10.1590/1982-7849rac2020190347
Editor-in-chief: Wesley Mendes-Da-Silva (Fundao Getulio Vargas, EAESP, Brazil)
Reviewers: Flvia Vital Januzzi (Universidade Federal de Juiz de Fora, Brazil)
Luiz Eduardo Gaio (Universidade Estadual de Campinas, Brazil)
Received: October 21, 2019
Last version received: March 02, 2020
Accepted: March 24, 2020
INTRODUCTION
The global financial market has experienced sharp restructuring and mergers in recent decades (Hankir, Rauch, & Umber, 2011). Bank mergers can be explained, according to the authors above, by the search for market power, by waves of corporate reorganizations, by operational and financial synergies (to prevent competitors from buying preferred targets), and by financial problems. Especially after the global economic crisis of 2008, monetary authorities encouraged the concentration of financial institutions (FIs), which contributed to the greater efficiency of regulation and supervision of the industry (Montes, 2014). Mergers and acquisitions are presented as private alternatives for fragile institutions to remain in operation without generating public expenditure, due to the potential appropriation of tax benefits by the acquirer (Bulow & Shoven, 1978).
As the FIs expanded their activities across national borders and by provision of new services, they raised concerns about competitiveness, that is, the lower supply of credit at higher prices when compared to the perfect competitive environment. If the characteristics of the financial sector, which help to make the industry more concentrated, can reduce competition, it implies estimating and analyzing the relationship between concentration and competition. In this regard, it is important to note that the literature predominantly shows that concentration is not an appropriate measure for competition (Bikker, Shaffer, & Spierdijk, 2009).
The perception of economic agents about the effects of concentration on the cost of financial intermediation and on stability has prompted scientific studies. The structure-conductperformance theory (VanHoose, 1985) suggests that concentration, characterized by the presence of a few large IFs, raises profitability by charging higher interest on loans and paying lower interest to depositors, reducing social welfare. Empirical results presented by Gilbert (1984) suggest that the increase in concentration caused an increase in average interest on loans and a decrease in interest on deposits in the North American banking market.
In the structure-efficient perspective (VanHoose, 1985), in contrast, the benefits from economies of scale and scope reduce interest rates on loans and raise those on deposits because profitability comes from efficiency gains. More recent studies have supported the existence of an inverse relationship between concentration and credit interest (Fungácová, Shamshur, & Weill, 2017). Still, they have indicated the importance of differentiating competition and concentration. Claessens and Laeven (2004) concluded that developed financial markets, with a lower barrier to entry into new organizations and services resulting from financial innovations, can be competitive even if concentrated.
There is also no consensus between concentration and stability, nor between competition and stability. Vries (2005) concluded that focusing risk on individual institutions increases the frequency of isolated failures. Matutes and Vives (1996; 2000) argue that a free market contributes to stability. Maghyereh and Awartani (2014), in turn, pointed out that competition and diversification do not contribute to the health of banks.
According to VanHoose (2010), theories concerning intermediary market structures, that is, between perfect competition and pure monopoly, are the most adequate to explain the behavior of the banking industry. There is also monopolistic competition (Chamberlin, 1962) in which the monopoly stems from the degree of differentiation of the products offered.
In view of the above, the estimate and the assessment of the competitiveness of the national credit market conducted in this article fill a scientific gap, due to the time frame, the Business Model Category (BMC) of the FI considered, and the methodology applied. The theoretical-empirical literature that evaluates competition in the sector is scarce, especially with regard to emerging countries like Brazil, due to the lack of data and the complexity of the calculation (Bikker & Haff, 2002; Turk-Ariss, 2010).
In addition, this research gains relevance by elucidating the relationship between concentration and competition. The nexus between concentration and competitiveness is not a pacified matter, both from a theoretical and an empirical perspective. Ahead of such a discussion, it still brings up the importance of regulation, as suggested by the literature (Akin, Aysan, Borici, & Yildiran, 2013; Claessens & Laeven, 2004), and the role of nonbanking institutions on increasing competition in the domestic credit market.
It is important to note that the financial sector is undergoing a transformation with the recent entry of financial technology companies, which includes digital banks, fintechs and large companies. Technological innovations increase the potential to enhanced competition in the credit market. Amid these changes and the academic debates revealed, this article aims to assess the level of concentration and competition, their causes and potential consequences, becoming a relevant research topic.
In this context, this study aims to evaluate the organization of the national credit market, by calculating and analyzing indicators that reflect concentration and competition between the first quarter of 2000 and the first quarter of 2019. The Herfindahl-Hirschman Index (HHI) and the Five Major Concentration Ratio (CR5), proposed by the literature and by regulatory authorities, according to VanHoose (2010) and Central Bank of Brazil (Banco Central do Brasil [BACEN], 2018), are used to measure the concentration. The degree of competition is estimated via the Lerner Indicator. With the results of the HHI, the CR5 and the Lerner Index, it is possible to assess the relationship between concentration and competition.
As specific objectives, this research compares the competition between the different BMCs (b1, b2, b3S, and n1) that make up the national banking and non-banking sector, in order to identify which group of FI contributes to the competition. Furthermore, competitiveness is evaluated by segmentation (S1, S2, S3, S4, and S5), thus classified by Resolution No. 4,553/2017 of the National Monetary Council (Conselho Monetário Nacional [CMN], 2017) according to size, international activity, and the organization's risk profile. Segmentation, implemented by the proportional prudential regulation of capital requirements, is expected to have contributed to the improvement of competition.
It is worth emphasizing that the literature on banking competitiveness innovated with the development of the Lerner method (Delis & Tsionas, 2009; Lerner, 1934), used in this article. Considered preferable to proxies such as H-Statistics (Turk-Ariss, 2010), the Lerner Indicator estimates a company's market power by the difference between the price charged by the organization and its marginal cost, also known as margin or mark-up. The method is in line with the concept of market power, given the financial institution's ability to charge interest on credit above the marginal cost (VanHoose, 2010).
The first hypothesis of the present study is that the increase in concentration in the national financial industry operating in credit does not imply a reduction in competitiveness, in the time frame considered. In this respect, potential explanations for the trajectory of the Lerner Indicator are evaluated, based on the scientific literature. Thus, as a second hypothesis, it is expected that regulatory aspects have contributed to the recent improvement in competition. The third hypothesis consists of looking for evidence that the competitiveness among the different FI groups that make up the national credit market is heterogeneous, and, thus, the margins applied by banks are higher than those practiced by credit unions.
The next section presents the theoretical framework about the industrial banking organization. In the subsequent section, there is a description of the theoretical method used to estimate the concentration and competition indicators. Then, section 4 presents the application of the method, from the selection of the sample and the definition of the proxies to the techniques used to estimate the regression of the total cost and to analyze the results. Section 5 is dedicated to the analysis of the econometric model and the presentation of the results of the indexes, also containing discussions on possible causes. Finally, conclusions, limitations, practical implications, and suggestions for future studies are made.
LITERATURE REVIEW
The economic policy analysis of the industrial banking organization has been guided by structure-conduct-performance (SCP) and efficient-structure theory (ES), according to VanHoose (2010). In SCP, the higher concentration increases profitability by charging higher interest on credit agreements and paying lower interest to depositors, reducing the population's well-being. In ES, the increase in profits can be explained by efficiency, arising out of scale and scope gains. In this context, there is no clear positive relationship between concentration shown and performance. Aspects related to the contestability of the market have to be significant to explain the competition (Claessens & Laeven, 2004).
It is also worth mentioning the New Empirical Organization (NEIO), which measures competition by estimating indicators, without exante assumptions about the structure or market conduct. In this approach, the Panzar-Rosse (1987) and Lerner (1934) methods stand out, which can be formally derived from equilibrium conditions assuming profit maximization (Bikker, Shaffer e Spierdijk, 2009).
Empirical evidence supports SCP, ES, and NEIO. Under the SCP, empirical results presented by Gilbert (1984) suggest that a 10% increase in concentration raised interest rates on loans between 0.1 and 11 basis points and reduced those on bank deposits in the USA between 0.1 and 18. According to Shaffer and Srinivasan (2002), the concentration contributed to the high rates of loans practiced in the American banking market. SCP's perspective is based on the dominant bank model, that is, on the assumption that large banks have advantages over smaller rivals in terms of costs and, therefore, exhibit anti-competitive behavior with respect to prices.
Under the ES, benefits from economies of scale and scope reduce interest rates on loans and raise those on deposits. In this approach, the interest charged by larger banks, which bear lower unit costs, restricts the rates practiced by smaller rivals, resulting in lower average loan rates and higher deposit rates. Higher profits from large FIs are due to efficiency, not predatory conduct designed to hinder the entry of new institutions.
Recent studies have supported the existence of an inverse relationship between concentration and interest rates of loans (Fungácová, Shamshur, & Weill, 2017; Silva, 2014; Tonooka & Koyama, 2003) due to factors such as regulation, informational rigidity, and limited financial education. When applying the Panzar-Rosse method, Claessens and Laeven (2004) found no evidence that competition is related to concentration in more than 4,000 banks in 50 countries, concluding that developed financial markets more contestable to new organizations and services tend to be competitive even if concentrated.
As regards risk, Berger, Leora, and TurkAriss (2008), when examining more than 8,000 banks in 23 countries between 1999 and 2005, found a lower degree of overall risk exposure in banks with greater market power. Vries (2005), who proposed a theoretical model of systemic risk arising from deposit market interconnections, concluded that concentrating risk on individual institutions raises the frequency of isolated failures. Thus, it suggests the segregation of risk in multiple institutions.
Matutes and Vives (1996; 2000) have developed models that associate bank collapse and imperfect competition in the deposit market; therefore, greater competitiveness would be healthy. Allen and Gale (2004) argued that perfect competition in the interbank market reduces stability. Maghyereh and Awartani (2014) pointed out that competition and diversification do not contribute to the robustness of banks.
The banking activity makes financial intermediation between savers and investors possible; however, it brings risks whose origin is in the capture of deposits redeemable at any time to offer credit. Competition-related aspects such as efficiency, although socially desirable, can create risks for banks individually and at a systemic level. If it is regulation that creates barriers to entry, making the sector more concentrated and possibly less competitive, thereby reducing the risk of insolvency, is a question that involves first deciphering levels of concentration and competition (VanHoose, 2010).
Intermediate market structures are the most appropriate to explain the banking industry (VanHoose, 1985). The Cournot approach, which assumes the existence of some competitors offering homogeneous products (Dasgupta & Stiglitz, 1981), can be used to examine this market. This is an oligopoly model in which the supply of credit and deposit depends on the estimated amount produced by competitors (Pindyck & Rubinfeld, 2010). In the oligopoly, there are barriers to entry for new entrants. Another approach is the monopolistic competition model (Chamberlin, 1962) where there are competitors and no restrictions on new entrants. The power of monopoly stems from the degree of differentiation of the products offered.
In these intermediate market environments, interest rates on loans tend to be higher and those on deposits lower, when compared to those in perfect competition. In 2015, Tabak, Gomes, and Medeiros (2015) had pointed out that concentration on credit portfolios increases monitoring efficiency since it facilitates loan recovery, making the bank less susceptible to risk.
The Herfindahl-Hirschman Index (HHI) and the Concentration Ratio of Five (CR5) are proposed by academia and monetary authorities to measure concentration in the financial system (BACEN, 2017; 2018; VanHoose, 2010). In terms of competition, it is recommended to estimate the indicators of Lerner and Boone (BACEN, 2017; 2018; Boone, 2008; Lerner, 1934).
The Lerner Index (Berger, Klapper, & TurkAriss, 2009; Lerner, 1934) measures the ability of a profit-maximizing bank to exercise market power by imposing high interest rates on loans in relation to their cost without significant loss of customers. Such capacity depends on the elasticity of demand for credit in relation to interest. In competitive environments, a high interest elasticity of demand for credit is expected, as well as difficulties in raising rates. Banks with market power, on the other hand, tend to set their rates by applying an optimal mark-up on their marginal cost of lending.
Thus, the greater the market power of the financial institution, the higher is the profit margin earned and the higher is the value of the Lerner Indicator. For example, suppose that the interest rate levied from the borrower is 20% per year (p.a.) and the cost of granting an additional unit of credit, known as marginal cost, is 10% p.a. Under these conditions, the mark-up on the marginal cost will be 10 percentage points (p.p.) and Lerner Index will be 0.50 or 50% of the credit price, resulting from the quotient between 10 and 20.
Therefore, Lerner Indicator captures how much the fees charged exceed the marginal cost, in relative terms, as a percentage of the price. Ideally, the Indicator should consider the rates charged on loans and deposits separately, which is often not feasible due to data barriers (TurkAriss, 2010). In view of this, the Indicator has been constructed in the literature to cover the entire activity of the FI (Angelini & Ceterolli, 2003), the so-called conventional Lerner.
The Boone index (Boone, 2008) proposes to measure the sensitivity of the FI's market share to changes in its marginal cost. In a competitive environment, increases in marginal cost tend to lead to increases in the rates charged on loans compared with other institutions, with a consequent reduction in their market share. The more negative the Boone index, the higher the level of competition in the sector. The Lerner and Boone indicators are considered complementary metrics to measure the level of competition (BACEN, 2017).
THE THEORETICAL MODEL
This section describes the theoretical method used to measure the indicators that reflect concentration and competitiveness in the domestic banking and non-banking segments for loans granted in Brazil. Regarding concentration, this research calculates the Herfindahl-Hirschman Index (HHI) and the Five Major Concentration Ratio (CR5). Both measure market shares, without implications, a priori, about the competitive behavior of institutions.
The HHI is obtained by summing the square of the participation in decimal form of each FIs in the credit market, as shown in Equation (1). Its results assume values between 0 (no concentration) and 1 (totally concentrated), whereas estimates between 0.1000 and 0.1800 represent moderate and, above 0.1800, high concentration (BACEN, 2017, 2018; VanHoose, 1985).
... (1)
The CR5, calculated according to Equation (2), consists of the participation of the five largest institutions in the total of loans offered by the banking and non-banking sector. The results of the CR5, as well as of the HHI, also range from zero (no concentration) to one (maximum concentration).
... (2)
With regard to competition, Lerner Indicator estimates market power by the difference between the price charged on credit product and the marginal cost of FI, as a percentage of the price, as shown in Equation (3) (BACEN, 2017; 2018; Turk-Ariss, 2010; VanHoose, 1985). Its results are in continuous dimensions ranging from null competition (Lit= 0) to full competition (Lit= 1). However, if the bank has other objectives, its Lerner may be negative, even if it shows profit.
.. (3)
Where
L: Lerner indicator of each FI. at each time t (quarter);
Cmarg.t: marginai cost of the FI. in t (calculatedfrom the partial derivative of the total cost function given by Equation 5); and
P : price loans of FI. in t, estimated by the ratio of its credit income and its total credit.
Measuring competitiveness requires the estimation of marginal cost, which corresponds to the increase in the total cost of offering an additional unit of loan. Silva (2014) points out that only internal agents of the organization know the marginal costs. In view of this, the scientific literature recommends estimating the transcendental logarithmic function (translog) of the total cost, given by Equation (4) (Silva, 2014; Tabak, Gomes, & Medeiros, 2015; Turk-Ariss, 2010). The translog consists of a general functional form introduced by Christensen, Jorgenson, and Lau (1973) considered flexible, with linear and quadratic terms, and can be used to test hypotheses of the firm's theory. Usually interpreted as an approximation by a second-order Taylor expansion series, it allows working with discretionary values for the elasticity of substitution between pairs of inputs.
... (4)
Where:
TCit: total cost of FI. in t;
wi: operating costs;
w2: financial intermediation costs;
y.ļt: FI's outputs,respectively credit operations (j=1), liquid assets (j=2) and other assets (j=3);
Dļt : FI's dummies of IF.; and
£.t = v + u.: error term, with v.t having normal and independent distribution; and
u ~N(0,o) and var(u ) = a2.
In the field of the theory of the firm, the cost function is considered a production function, which relates products to the respective production factors used in the production process. By estimating the coefficients of the production function in Equation (4), obtained
via the multiple regression econometric model, it is possible to measure the marginal cost of credit operations for each IF in each period, according to Equation (5).
... (5)
METHOD APPLICATION
Sample and data source
The HHI, CR5, and Lerner Index are measured in this survey at quarterly frequency, from the first quarter of 2000 (Q1 2000) to the first quarter of 2019 (Q1 2019), thus incorporating the latest global financial crisis. The time window of approximately 20 years (77 quarters) can be considered sufficient to accommodate bullish and bearish cycles in the asset market and in the economy. In addition, this is the longest period available for the accounting information published in BACEN's database, IF.data (https://www3.bcb.gov.br/ifdata/, recovered July 30, 2019), up to the time of submission of this article.
The concentration and competition indices include the isolated financial institutions between the Q1 2000 and Q1 2019 belonging to the banking segment, Business Model Category (BMC) b1 and b2, and non-banking, BMCs n1 and b3S, henceforth the system, as shown in Table 1. BMC b1, b2, b3S, and n1 institutions correspond to around 93% of the credit market at the end of 2018, according to data available from IF.data.
The banking segment BMC b1 is represented, according to the monetary authority (BACEN, 2018), by commercial banks, universal banks with commercial portfolio, and savings banks. Universal banks without commercial portfolio and investment banks make up the b2 banking segment. Credit unions and non-bank credit companies are represented by b3S and n1, respectively.
Thus, it was possible to form an unbalanced panel with information from 1,720 individual institutions. According to the regulatory authority, these organizations comprise financial institutions and other institutions authorized to operate by the Central Bank separated by legal personality (CNPJ), at an unconsolidated level. In this configuration, the corporate interests in Brazil and/or abroad and the agencies abroad are registered as investments through the equity method.
It is worth illustrating that non-banking credit companies (n1) are represented by organizations such as leasing companies, mortgage companies, and microenterprise credit companies. Credit cooperatives (b3S) directly perform customer service. Although the cooperatives do not aim at profit, they seek to maximize the benefit enjoyed by their members and keep their projects at sustainable levels, which allows them to evaluate their competitiveness through the Lerner Indicator.
The Banking Reports of the Central Bank (BACEN, 2017; 2018) consider, in the estimation of the Lerner Index, both credit cooperatives and non-bank credit institutions, but does not include development banks. The development banks, classified as BMC b4, are also not considered in this survey as they do not aim at profit, nor do they maximize benefits from their representatives. These institutions accounted for 8.4% of credit operations net of provisions in Q3 2018.
Variables and proxies
In order to estimate the concentration and competition indexes, use was made of quarterly accounting information of the Individual Financial Institutions participating in the system published by Central Bank of Brazil in the IF.data database. The selection of proxies was based on the Banking Report (BACEN, 2017; 2018), in Ornelas, Silva, and VanDoornik (2020), in Turk-Ariss (2010), and in VanHoose (2010), as detailed in Table 2.
Estimation and analysis techniques
From the sample containing accounting information of 1,720 FIs over 77 quarters, an unbalanced panel was formed with 80,849 data considered in the estimate of the total cost dependent variable whose general expression is represented by Equation (6). A panel is formed when time series with cross-sectional data are combined. Statistical Analysis Software Studio OnDemand for Academics (SAS) was used to build the database and to obtain the competition concentration indicators.
... (6)
Where:
yit: total cost of FI. in t;
X : Outputs and inputs prices of FI. in t;
i: cross section;
t: time series.
In the translog function of total cost, production factors are quantified through the natural logarithm of the values measured in relative terms, because they represent input prices, according to BACEN (2018), Ornelas et al. (2020), Maghyereh and Awartani (2014), and Turk-Ariss (2010). The nepierian logarithm is also applied to the absolute values of financial products. The logarithmic scales allow for the reduction of high magnitude quantities to a smaller scale.
The parameters of the translog function of the total cost are estimated by means of multiple linear regression applied to the data arranged in the unbalanced panel, formed by proxies of the variables that integrate the model represented by Equation (4). In the sequence, these parameters are used in the function of the marginal cost of product credit for each FI in each period, according to Equation (5). With the results of the marginal cost and the price of loan operations, whose calculation is indicated in Table 1, the Lerner Indicator is obtained.
The concentration indices, HHI and CR5, are calculated according to Equations (1) and (2) and proxies presented in Table 1. With the concentration and competitiveness indicators, measured by the average and its quartiles, it is possible to promote analyses about the behavior of each one of them separately and jointly. The period following the last global financial crisis and the implementation of the prudential regulation of capital requirements was highlighted. In addition, given the heterogeneity of Lerner's distribution, we compare the levels of competition observed in each BMC.
EMPIRICAL AND DESCRIPTIVE ANALYSIS AND RESULTS
Estimation of total cost
To identify the level of competition in the system, it is first necessary to estimate the total cost (TC) by multiple regression econometric model, where: TC = f (operating cost, financial intermediation cost, outputs).
When regressing a time series variable over other variables that also follow time series, it is necessary that the series involved are stationary, otherwise a high coefficient of determination (R2) may reflect a spurious relationship. A stationary stochastic process occurs if the mean and the variance are constant over time and the value of the covariances between two periods depends only on the lag between them.
Maddala and Wu (1999) and Choi (2001) proposed the test developed by Fisher (1932) which is based on the combination of p-value and augmented Dickey-Fuller (ADF) values for each cross-section unit. This is a non-parametric test whose null hypothesis (H0) is that all panels contain unitary root. The results presented by the SAS indicate rejection of H0 at the level of statistical significance of 1%, which was expected for variables measured in relative terms.
It is worth noting that the four types of Fisher-Type test rejected the null hypothesis that all panels contain unit roots at the significance level of 1%: Chi-Square Fisher test, asymptotic Fisher test, inverse normal test, and logit test. Choi (2001) recommends the inverse normal test, corresponding to the Z statistic (normal distribution), in the analyses. It is also observed that the logit test L· (t distribution) corroborates the Z test, which usually occurs. Therefore, the alternative hypothesis of panel stationarity prevails.
As for the method of parameter estimation, panel-built models use specific tools according to the structure of the error term. The error term (£it), which captures what is no longer explained about the dependent variable, is broken down into the term that varies in the time of the observation units (vit) and the disturbance of the specific units (u.). The error reflecting unobserved individual characteristics may affect the dependent variable.
The Hausman specification test (1978) was used to evaluate the adjustment of fixed and random effects models. The null hypothesis of no correlation between the effects (individual or temporal) and the regressors was rejected at a significance level of 1%, favoring the specification of fixed effects. Under H0, the fixed effects estimator is consistent (asymptotically convergent to the real values of the population parameters), but inefficient (no minimum variance), while the random effects estimator is consistent and efficient. Under the alternative hypothesis, only the fixed effects estimator remains consistent because there is correlation between the effects and the explanatory variables.
It is also verified that the F test of individual effects suggests heteroscedasticity in the observations, which strengthens the choice for a fixed effects panel model. At a 1% significance level, the null hypothesis of homoscedasticity was rejected, concluding therefore that all intercepts are not the same, satisfying the assumption of the model of different intercepts. Fixed effect estimators are the most appropriate option to model panel data when the intercept is correlated with the explanatory variables in any time period.
Once the econometric assumptions are met, the statistical significance of the coefficients and the global fit metrics of the total cost (TC) estimation model are verified. Then, the marginal cost (Cmag) is calculated by deriving the total cost function from the credit operations. The Lerner Index, therefore, can be calculated by the difference between the aggregate price and the marginal cost, as a proportion of the price. The test results and the parameters of the multiple normal linear regression of the total cost dependent variable (TC), with a 95% confidence interval, considering fixed effects, are shown in Table 3.
Regarding the global adjustment of the model, the R2 (R-Square), which represents the percentage of the endogenous variable explained by the exogenous ones, was high. The root mean square error of approximation (RMSE) or root of the mean square error, which corresponds to the amount of population approximation error in a covariance matrix, was calculated at 0.3982. The lower its value, the greater the accuracy of the model.
Locally, the model proved to be well adjusted because the Student's t-test pointed to the statistical significance of the coefficients of exogenous variables, indicating, therefore, that the parameters are statistically different from zero at the significance level of 1%. In other words, the probability of making the type I error, that is, of rejecting the null hypothesis, H0: A,=0, being this true, is at an acceptable level (p-value < 1%). In addition, the parameters of the independent variables are associated with a low standard error.
It is worth noting that by meeting the econometric assumptions, it is possible to interpret the signs and magnitudes of the translog function cost coefficients (Albuquerque, 1987). Average growth rates of production factor prices, price elasticities, and substitution elasticities are relevant concepts that can be analyzed through total cost regression parameters. Such microeconomic interpretations have the potential to be the subject of a specific study aiming at deepening the evaluation of banking efficiency in the credit market.
Descriptive statistical analysis
For a better understanding of the results and analysis of the competition indicators, which will be analyzed in the following section, it is important to present the descriptive statistics for each BMC considered in this article. Table 4 presents the descriptive analysis of Lerner Indicator whose results suggest the existence of a negative (or left) asymmetric distribution, that is, there is a higher concentration of values above the average. It is also worth adding that single credit cooperatives (b3S) presented the lowest average and median mark-up among the BMCs considered, while the non-banking credit institutions (n1) registered the highest average and median markup in the period.
Results of HHI, CR5, and Lerner Indicator
Concentration versus competition ratios
The scientific literature does not present a consensus on the nexus between competition and concentration within the financial industry. The results of the HHI suggest that the concentration of the banking and non-banking system operating in credit (b1+b2+b3S+n1) increased from low (0.07) to moderate (0.13) over the sample period considered. With regard to CR5, Caixa, BB, Itaú-Unibanco, Bradesco, and Santander controlled 72.2% of loans in the Q1 2019, compared to 45.4% in the Q1 2000.
Despite the increase in concentration, the average of the system's Lerner Indicator, weighted by the volume of credit offered by each FI in relation to the BMC it belongs to, closed the Q1 2019 at a level similar to that of the Q1 2000, of 0.8. Therefore, competition did not deteriorate in the period. By analyzing the competitiveness by the median of Lerner, which discards the highest and lowest indices, there is an improvement in competition. The correlation between the median of Lerner Index and the HHI was equal to 4.8% and, between Lerner and RC5, equal to -0.72%. Figures 1 and 2 allow us to visualize the behavior of the concentration indicators in comparison to the competition.
The concentration is explained, in part, by the need for economies of scale, high investments, and complex risk management in the sector. In addition, with the 2008 crisis the market has become more concentrated, with relevant merger and acquisition events. The increase was also perceived in most countries with the outbreak of international financial instability, according to a study by the Bank for International Settlements (BIS) (2018).
After the international financial turbulence, more specifically from the Q3 2009 onwards, credit mark-ups rose, which means that the competition deteriorated until 2016, even with the fall in the Selic rate in the middle of 2009. However, the monetary tightening that began in mid-2013, with the Selic rate at 7.5% per year (p.a.), until the end of 2016, with the Selic rate at 14.5% p.a., may have contributed to the increase in margins on loans provided by the sector. In addition to the increase in the opportunity cost, it is worth remembering that the FIs faced an increase in default due to the domestic economic crisis in that period.
The concentration indicators, however, proved to be relatively more persistent than the competition indicators, which have already returned to the pre-crisis level (Q3 2008). The fall in interest rates from the end of 2016 to the beginning of 2019, by more than eight percentage points (p.p.), may have influenced the reduction of credit markups from 2017 onwards. In addition, competition may have increased due to regulatory aspects, such as the proportionality of prudential regulation of capital requirements, as suggested in the most recent literature (Claessens & Laeven, 2004).
The Resolution No. 4,553/2017 (CMN, 2017), published on January 30, 2017, separated the FIs into five segmentations. In the S1 segmentation are banks whose size, measured by total exposure, is equal to or greater than 10% of GDP (Gross Domestic Product) or that are internationally active. According to the Basel Committee, banks are defined as internationally active banks that have Tier 1 capital of more than €3 billion and include all 30 banks that have been designated by the Financial Stability Board as global systemically important banks. S2 groups banks whose size is less than 10% of GDP and other FIs whose size is greater than 1% of GDP. S3 contains banks and non-banking institutions with sizes between 0.1% and 1% of the GDP. Banks and non-banking FIs smaller than 0.1% of GDP fall into S4. Of the latter, credit unions and non-banking institutions that have a simplified risk profile will fall under S5.
Thus, the requirements of the Basel Accords became valid for banks with relevant international activity, gathered in the S1 segment. For the institutions classified in the other segmentations, the standards started to be applied proportionally, contributing to increase competition in the Brazilian market. By following a prudential rule of complexity appropriate to their activities, FIs can compete more equally with the others.
The analysis in Figure 3 supports the perspective that credit margins have been reduced since the Regulation, especially in those segments whose requirements have been relaxed. Credit cooperatives and non-banking institutions whose simplified risk profile fitted into S5 registered the largest falls in the Lerner Index.
The heterogeneity in the distribution of the Lerner Index reveals the importance of presenting the Competitiveness Indicator in terms of quartiles, and prompts an evaluation of each BCM separately, as shown in the next sections.
Competition index
Profit maximizing institutions with relative market power seek to apply a mark-up on their marginal costs in offering credit. In competitive environments, the greater elasticity of demand for credit in relation to interest tends to limit the value of loan rates. Therefore, the higher the mark-up, the less competition in the market. Lerner Indicator of the banking segments b1 and b2 and of the nonbanking segments b3S and n1 presented a trajectory represented in Figure 4. The average was weighted by the volume of credit offered by each FI relative to the BMC to which it belongs. The median or 2nd quartile, that consists of the value up to which 50% of the ordered sample is found, is represented by the legend p_50. The 1st quartile, designated as p_25, is the value which holds 25% of the observations of the sample below and 75% above, while the 3rd quartile (p_75) leaves 75% of the observations below and 25% above.
The weighted average of the Lerner Indicator follows a dynamic similar to that presented by the median; however, the level of the average indicator is higher for most of the period. This result indicates that large FIs, such as type b1 banks, have Lerner in the upper tail of the distribution.
Banking competition index
Given the relevance of BMC b1 banking institutions in granting the total loan, their average Lerner Indices follow the trajectory and the level of the average of the system, as shown in Figure 5. The average of the mark-up for both b1 and b2, although it varied along the series, closed the Q1 2019 practically at the same levels recorded at the beginning of the sample period, as can be seen in Figures 5 and 6.
Starting in the Q3 2009, that is, one year after the eruption of the global financial crisis, the indices rise, contributing to the worsening of the competition system identified in section 5.3.1. It is also worth noting the increase in the dispersion of the competition indicator to b1 and b2.
Since the Q4 2016, however, the banks have seen their mark-ups fall. It is important noting that the indicator already reflects the credit operations carried out by digital banks: ING Bank, Original Bank, BS2 Bank, Inter Bank, Modal Bank, and Neon Bank. Together, digital banks accounted for 0.8% of total net provisioning loans granted by the system.
Competition index of non-banking institutions
With respect to the non-banking segment, the average of the mark-up of the credit cooperatives (b3S) presented a decrease in the period analyzed by the present research, from 0.80 to 0.67, as shown in Figure 7. After two years of the beginning of the world financial crisis, these institutions raised their margins on the offered credit but for a short period. Since 2017, as it happened in the banking segment, they registered an increase in competitiveness. The recent fall in the Lerner Indicator of non-banking FIs may have been influenced by the easing of monetary policy and the implementation of prudential regulation of proportional capital requirements.
Although cooperatives do not aim at profit, they seek to maximize the benefit enjoyed by their members and maintain their sustainable projects, which allows them to assess their competitiveness through the Lerner Indicator. It is interesting to note that, since the beginning of the considered time cut, cooperatives have stood out for presenting average levels of competitiveness higher than b1, b2, and n1, as shown in Figure 8.
The cooperatives, although representing only 3.0% of the loans granted by the system (Q3 2018), have grown in participation (BACEN, 2017), increasing the potential to increase competition in the credit market. The monetary authority also highlights that the interest rates practiced by these institutions are lower than those practiced by the b1 banking segment. A possible explanation lies in the increase in professionalism and the consequent gain in scale, as well as in the disengagement of the search for profit, tax benefits, and positive feedback between cooperative members and the cooperative.
Non-bank credit institutions (n1) maintained their weighted average mark-ups at high levels throughout the series. Moreover, their Lerner Indices were higher than those presented by the other BMCs, suggesting the lower competition of this group, as shown in Figure 8. These institutions are responsible for 3.9% of the credit operations (Q3 2018).
CONCLUSION
The concentration indicators related to the domestic financial industry operating in credit showed a consistent increase between the Q1 2000 and Q1 2019, especially from 2008. The HHI went from low concentration at the beginning of the period to moderate. The five largest institutions, which controlled 45.4% of the credit market, started to control 72.2% at the end of the series. The increased concentration of the system can be explained by strategic issues, such as the search for gains of scale and scope, as well as the need for high investments and complex risk management in the sector. After the 2008 crisis, relevant mergers and acquisitions contributed to the concentration, movement observed in most countries (Bank for International Settlements, 2018).
Despite the increase in concentration, the median of Lerner Indicator declined from 0.83 in the Q1 2000 to 0.68 in the Q1 2019, which means that competition increased. The average of the Indicator, weighted by the loans granted by each FI in the respective BMC, closed the series at practically the same level, suggesting that large institutions did not present a reduction in their credit mark-ups.
The comparison between concentration and competitiveness indicators supports the first research hypothesis, further reinforcing the structure-profit theory, which argues that there is not necessarily a trade-off between concentration and competition (VanHoose, 2010). From this perspective, gains in efficiencies provided by mergers and acquisitions allow FIs to reduce interest without loss of profitability. The existence of an inverse relationship between concentration and credit interest has prevailed in the current literature, according to Fungacová, Shamshur, and Weill (2017). Claessens and Laeven (2004) have shown that financial markets with lower barriers to new organizations and financial innovations can be competitive and concentrated.
Competition in the financial industry operating in credit deteriorate after the outbreak of the international financial turmoil of 2008. In addition to the increase in the opportunity cost, with the monetary tightening that began in mid2013, it is worth remembering that FIs faced increased default due to the domestic economic crisis in that period. However, concentration indicators proved to be relatively more persistent than those of competitors, who have already returned to pre-crisis levels.
Lerner average and median registered a significant reduction from 2017 onwards. The results suggest that competition may have increased due to regulatory issues, mainly the proportionality of prudential regulation of capital requirements, as pointed out in the most recent literature (Claessens & Laeven, 2004) and the second research hypothesis. With the implementation of Resolution No. 4,553/2017 (CMN, 2017), smaller IFs started to follow simpler rules than those applied to large banks, contributing to increase competition in the Brazilian market.
In addition, it is also worth mentioning the relevance of the credit cooperatives expanding the supply of supplementary credit, as well as technological innovations, which also affect the functioning of the system. In this context, this article found evidence that competition in the non-bank b3S segment is greater than that observed in b1 and b2 banks, as established in the third hypothesis.
Technology intensive financial companies, which include digital banks, fintechs, and large companies, have evolved in recent years, increasing the potential to stimulate competition in the credit market. It is important to remember that the concentration and competition indicators estimated in this article take into account the recent entry of digital banks whose accounting information is registered at IF.data. However, there are no public data available for the calculation of the indices related to fintechs, thus constituting a limitation of the research.
When comparing the competitive performance by BMC, it is noted that the Lerner Index of b1 banking institutions follows the trajectory and the level of the system average. The average mark-up for both bl and b2 closed the Q1 2019 at the same levels recorded at the beginning of the series. Starting with the Q3 2009, i.e., one year after the onset of the world economic crises, the Indices rose, corroborating the perspective that large institutions, such as banks, contributed to the worsening of the system's competitiveness. Since the Q4 2016, the banking segment has shown improvement in the level of competition.
It is concluded, in the article conducted and despite the limitations pointed out, that the estimates and analysis of competition within the Brazilian credit market in itself already fill a research gap. In the absence of academic consensus, this paper also elucidates the relationship between concentration and competitiveness, in addition to highlighting the relevance of regulation and credit cooperatives on the margins practiced in credit operations.
Theoretical and empirical literature on competition in the financial industry is rare, especially in relation to developing nations (Bikker & Haff, 2002; Turk-Ariss, 2010). Thus, this paper contributes to the academic and practical epistemology by becoming useful to support microeconomic policies capable of promoting contestability. Initiatives that ease entry restrictions for non-banking institutions and companies that operate with technology may contribute to the fall in margins charged on credit operations. In this context, it is expected that Resolution No. 4,656/2018 (CMN, 2018), which regulated the performance of credit fintechs, will stimulate competition in the sector.
Estimates of concentration and competition should move towards incorporating other countries and other financial products and services. Publications of empirical studies at the international level generally focus on aggregate banking activity rather than on separate credit operations (Turk-Ariss, 2010). Thus, future studies that estimate competitiveness in the global loan market tend to gain relevance. From this perspective, it is feasible to compare the level of national competition with that presented by Latin America and the Caribbean, and by competing countries.
Research also deserves to cover other products and services, such as means of payments (cards), transfers and deposits, and thus obtain a full assessment of competitiveness. The expanded scope is justified by the growth of the payments market and the recent impact of competition, especially in the acquiring sector. The development and relevance of the payments industry is not accompanied by scientific work. No specific studies have been identified yet on the acquiring activity. Akin, Aysan, Borici and Yildiran (2013) and Shaffer and Thomas (2007) evaluate the sector from the perspective of issuing banks and concluded that regulation has increased competition in the sector.
Identifying the impact of competition on systemic risk is also a fruitful line of research. Given the adverse systemic effects, the financial system regulator wonders what factors lead to the imminence of a bank failure. As far as the relationship between competition and stability is concerned, there is no convergence. The traditional side argues that more competitive banking systems generate instability, as market power would reduce information asymmetry and banks' exposure to risk. Theoretical and empirical evidence also indicates that competition increases banks' robustness, since efficiency creates incentives to select and monitor creditors, reducing default on loans granted.
REFERENCES
Allen, F., & Gale, D. (2004). Competition and financial stability. Journal of Money, Credit, and Banking, 36(3), 453-480. Retrieved from https:// econpapers.repec.org/article/mcbjmoncb/ v_3a36_3ay_3a2004_3ai_3a3_3ap_3a453-80.htm
Akin, G. G., Aysan, A. F., Borici, D., & Yildiran, L. (2013). Regulate one service, tame the entire market: Credit cards in Turkey. Journal of Banking and Finance, 37(4), 11951204. https://doi.org/10.1016/j.jbankfin.2012.11.016
Albuquerque, M. C. C. (1987).Uma análise translog sobre mudança tecnológica e efeitos de escala: Um caso de modernizaçao ineficiente. Pesquisa e Planejamento Econômico, 7(1), 191-220. Retrieved from http:// repositorio.ipea.gov.br/handle/11058/6027
Angelini, P., & Ceterolli, N. (2003) The effects of regulatory reform on competition in the banking industry. Journal of Money, Credit, and Banking, 35(5), 663-684. https://doi.org/10.1353/mcb.2003.0033
Bank for International Settlements. (2018). Structural changes in banking after the crises [CGPS Working paper n. 60]. Bank for International Settlements, New York, USA. Retrieved from https://www.bis.org/publ/cgfs60.htm
Banco Central do Brasil. (2017). Relatório de economia bancária 2017. Retrieved from https://www.bcb.gov.br/pec/ depep/spread/REB_2017.pdf
Banco Central do Brasil. (2018). Relatório de economia bancária 2018. Retrieved from https://www.bcb.gov.br/ content/publicacoes/relatorioeconomiabancaria/ reb_2018.pdf
Berger, A., Klapper, L., & Turk-Ariss, R. (2009). Bank competition and financial stability. Journal of Financial Services Research, 35(2), 99-118. https://doi.org/10.1007/ s10693-008-0050-7
Berger, A., Leora, K, & Turk-Ariss, R. (2008). Bank competition and financial stability [Policy Research Working Paper n° 4696]. World Bank, Washington, DC, USA. Retrieved from http://hdl.handle.net/10986/6794
Bikker, J., & Haaf, K. (2002). Competition, concentration, and their relationship: An empirical analysis of the banking industry. Journal of Banking and Finance, 26(11), 2191-2214. https://doi.org/10.1016/S03784266(02)00205-4
Bikker, J. A., Shaffer, S., & Spierdijk, L. (2009). Assessing competition with the panzar-rosse model: The role of scale, costs, and equilibrium [DNB Working Paper n° 225]. De Nederlandsche Bank, Amsterdam, Netherlands. Retrieved from https://www.dnb.nl/ binaries/Assessing%20Competition%20with%20 the%20Panzar-Rosse%20Model_tcm46-224137.pdf
Boone, J. A. (2008). A new way to measure competition. The Economic Journal, 118(531), 1245-1261. https://doi. org/10.1111/j.1468-0297.2008.02168.x
Bulow, J. I., & Shoven, J.B. (1978). The bankruptcy decision. The Bell Journal of Economics, 9(2), 437-456. https://doi. org/10.2307/3003592
Chamberlin, E. H. (1962). The theory of monopolistic competition. Cambridge, MA: Harvard University Press.
Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272. https://doi.org/10.1016/S0261-5606(00)00048-6
Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28-45. https://doi.org/10.2307/1927992
Claessens, S., & Laeven, L. (2004). What drives bank competition? Some international evidence. Journal of Money, Credit & Banking, 36(3), 563-583. https://doi.org/10.1353/ mcb.2004.0044
Conselho Monetário Nacional [CMN]. (2017). Resoluçao n. 4.553, de 30 de janeiro de 2017: Estabelece a segmentaçao do conjunto das instituiçöes financeiras e demais instituiçöes autorizadas a funcionar pelo Banco Central do Brasil para fins de aplicaçao proporcional da regulaçao prudencial. Diário Oficial da Unido. Retrieved from https://www.bcb.gov. br/pre/normativos/busca/downloadNormativo. asp?arquivo=/Lists/Normativos/Attachments/5033 5/ Res_4553_v1_O.pdf
Conselho Monetário Nacional [CMN]. (2018). Resoluçao n. 4.656, de 26 de abril de 2018: Dispöe sobre a sociedade de crédito direto e a sociedade de empréstimo entre pessoas, disciplina a realizaçao de operaçöes de empréstimo e de financiamento entre pessoas por meio de plataforma eletrônica e estabelece os requisitos e os procedimentos para autorizaçao para funcionamento, transferencia de controle societário, reorganizaçao societária e cancelamento da autorizaçao dessas instituiçöes. Diário Oficial da Unido. Retrieved from https://www.bcb.gov.br/pre/normativos/busca/ downloadNormativo.asp?arquivo=/Lists/Normativos/ Attachments/50579/Res_4656_v1_O.pdf
Dasgupta, P., & Stiglitz, J. (1981). Entry innovation, exit: Towards a dynamic theory of industrial market structure. European Economic Review, 15(2), 137-158. https://doi.org/10.1016/0014-2921(81)90084-2
Delis, M. D., & Tsionas. E.G. (2009). The joint estimation of bank-level market power and efficiency. Journal of Banking & Finance, 33(10), 1842-1850. http://doi. org/10.1016/j.jbankfin.2009.04.006
Fisher, R.A. (1932). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Fungácová, Z., Shamshur, A., & Weill, L. (2017). Does bank competition reduce cost of credit? Cross-country evidence from Europe. Journal of Banking and Finance, 83(C), 104-120. https://doi.org/10.1016/j. jbankfin.2017.06.014
Gilbert, A. (1984). Bank market structure and competition: A survey. Journal of Money, Credit, and Banking, 16(4), 617-644. https://doi.org/10.2307/1992096
Hankir, Y., Rauch, C., & Umber, M. P. (2011). Bank M&A: A market power story? Journal of Banking & Finance, 35(9), p. 2341-2354. https://doi.org/10.1016/j. jbankfin.2011.01.030
Hausman, J.A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251-1271. https://doi. org/10.2307/1913827
Lerner, A. (1934). The concept of monopoly and the measurement of monopoly power. The Review of Economic Studies, 1(3), 157-175. https://doi.org/10.2307/2967480
Maddala, G. S., & Wu, S. A. (1999). Comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631-652. https://doi.org/10.1111/1468-0084.0610s1631
Maghyereh, A. I., & Awartani, B. (2014). Bank distress prediction: Empirical evidence from the gulf cooperation council countries. Research in International Business and Finance, 30(C), 126-147. https://doi.org/10.1016/j. ribaf.2013.07.001
Matutes, C., & Vives, X. (1996). Competition for deposits, fragility, and insurance. Journal of Financial Intermediation, 5(2), 184-216. https://doi.org/10.1006/jfin.1996.0010
Matutes, C., & Vives, X. (2000). Imperfect competition, risk taking, and regulation in banking. European Economic Review, 44(1), 1-34. https://doi.org/10.1016/S00142921(98)00057-9
Montes, C. P. (2014). The effect on competition of banking sector consolidation following the financial crisis of 2008. Journal of Banking & Finance, 43(C), 124-136. https://doi.org/10.1016/j.jbankfin.2014.03.004
Ornelas, J. R. H., Silva, M. S da., & Van Doornik, B. F. N. (2020). Informational switching costs, bank competition and the cost of finance [Working Paper Series n° 512], Banco Central do Brasil, Brasilia, DF, Brazil .Retrieved from https://www.bcb.gov.br/pec/wps/ingl/wps512. pdf
Panzar, J. C., & Rosse, J. N. (1987). Testing for "monopoly" equilibrium. Journal of Industrial Economics, 35(4), 443-56. https://doi.org/10.2307/2098582
Pindyck, R. S., & Rubinfeld, D.L. (2010). Microeconomia. Sao Paulo: Pearson Education do Brasil.
Silva, M. S. (2014). Avaliaçao do processo de concentraçaocompetiçao no setor bancário brasileiro [Trabalhos para discussao, n° 377], Banco Central do Brasil, Brasilia, DF, Brazil.
Shaffer, S., & Srinivasan, S. (2002). Structure-pricing linkages among single-market banks, controlling for credit quality. Applied Economics Letters, 9(10), 653-656. https://doi.org/10.1080/13504850110115159
Shaffer, S., & Thomas, L. (2007). A reassessment of market power among credit card banks. Applied Financial Economics, 17(9), 755-767. https://doi. org/10.1080/09603100600771042
Tabak, B. M., Gomes, M. R., & Medeiros, Jr., M. (2015). The impact of market power at bank level in risk-taking: The brazilian case. International Review of Financial Analysis, 40(C), 154-165. https://doi.org/10.1016/j. irfa.2015.05.014
Turk-Ariss, R. (2010). On the implications of market power in banking: Evidence from developing countries. Journal of Banking & Finance, 34(4), 765-775. https://doi. org/10.1016/j.jbankfin.2009.09.004
Tonooka, E. K., & Koyama, S. M. (2003). Taxa de juros e concentraçao bancária no Brasil [Textos para discussao, n° 62]. Banco Central do Brasil, Brasilia, DF, Brasil.
VanHoose, D. (2010). The industrial organization of banking: Bank behavior, market structure and regulation. New York: Springer.
VanHoose, D. (1985). Bank and market structure and monetary control. Journal of Money, Credit, and Banking, 17(3), 298-311. https://doi.org/10.2307/1992626
Vries, C. G. de. (2005). The simple economics of bank fragility. Journal of Banking and Finance, 29(4), 803-825. https://doi.org/10.1016/jjbankfin.2004.08.003
Autorship
Monique de Abreu Azevedo·
Setor Bancário Sul, Quadra 3, Bloco B, Edificio Sede do Banco Central do Brasil, 7° andar, Asa Sul, 70074-900, Brasilia, DF, Brazil.
E-mail address: [email protected]
https://orcid.org/0000-0003-4897-7227
Ivan Ricardo Gartner
Campus Universitário Darcy Ribeiro, s/n, Edificio FACE, Sala B2-B1-47/7, 70910-900, Brasilia, DF, Brazil.
E-mail address: [email protected]
https://orcid.org/0000-0002-9780-1212
* Corresponding Author
Authors' Contributions
1st author: Literature review; methodological planning; data collection; application of the model; data analysis; interpretation of results; manuscript writing.
2nd author: Literature review; methodological planning; data collection; application of the model; data analysis; interpretation of results; writing of the manuscript.
Data Availability
All data and materials were made publicly available through the Mendeley platform and can be accessed at:
de Abreu Azevedo, Monique (2020), "Data for "Concentration and Competition in the Domestic Credit Market"", Mendeley Data, vl http://dx.doi.org/10.17632/c 5kzfxbbb4.1
Funding
The 1st author is grateful for the technical and financial support granted by the Central Bank of Brazil (Banco Central do Brasil). The conclusions of the research are the responsibility of the authors, and therefore do not reflect the opinion of this Authority.
Conflict of Interest
The authors have stated that there is no conflict of interest.
Copyrights
RAC owns the copyright to this content.
Plagiarism Check
The RAC maintains the practice of submitting all documents approved for publication to the plagiarism check, using specific tools, e.g.: iThenticate.
Peer Review Method
This content was evaluated using the double-blind peer review process. The disclosure of the reviewers' information on the first page is made only after concluding the evaluation process, and with the voluntary consent of the respective reviewers.
Concentraçao e Competiçâo no Mercado de Crédito Doméstico
Monique de Abreu Azevedo1,2
Ivan Ricardo Gartner1
RESUMO
Contexto: o mercado financeiro tem vivenciado acentuadas reestruturaçöes e concentraçöes nas últimas décadas. Â medida que os bancos expandem o escopo de suas atividades, levantam preocupaçöes quanto ao impacto sobre a competitividade do setor. Se as características da indústria financeira, que colaboram para tornar o setor mais concentrado, podem torná-la menos competitiva, implica avaliar a relaçao entre concentraçao e concorréncia. Objetivo: o objetivo geral deste estudo consiste em promover diagnóstico da organizaçao do mercado de crédito nacional mediante cálculo e análise de indicadores de concentraçao e de competiçâo, entre 2000 e 2019. Métodos: para mensurar a concentraçao, sao utilizados os índices de Herfindahl-Hirschman e a Razâo de Concentraçao dos Cinco Maiores. O grau de competiçâo é estimado via modelo econométrico de Lerner aplicado a dados dispostos em um painel com informaçöes contábeis-financeiras de instituiçöes financeiras. Resultados: os resultados sugerem que embora a concentraçao tenha se elevado no recorte temporal considerado, a competitividade nao se deteriorou, reforçando o argumento de referencias seminais de que concentraçao nao necessariamente prejudica competiçâo. Conclusäo: diante de ausencia de consenso académico, este trabalho elucida a relaçao entre concentraçao e competitividade. Ainda, ganha relevancia ao apontar o papel da regulaçao e das cooperativas de crédito no aumento da concorrencia recente. O trabalho torna-se, assim, passível de apoiar políticas capazes de promover a contestabilidade, como iniciativas que flexibilizem restriçöes a entrada de instituiçöes nao bancárias e de empresas de tecnologia financeira.
Palavras-chave: concentraçao; competiçao; crédito; bancos; cooperativas de crédito
Classificacäo JEL: E5, D4, P1.
ABSTRACT
Context: the financial market has experienced sharp restructuring and mergers in recent decades. As banks expand the scope of their activities, they raise concerns about the impact on the sector's competitiveness. If the characteristics of the financial industry, which contribute to make the sector more concentrated, can make it less competitive, it implies assessing the relationship between concentration and competition. Objective: the general objective of this study is to promote diagnosis of the organization of the national credit market by calculating and analyzing concentration and competition indicators, between 2000 and 2019. Methods: to measure concentration, the Herfindahl-Hirschman and the Five Major Concentration Ratio indexes are used. The degree of competition is estimated via Lerner's econometric model applied to data displayed on a panel with accounting and financial information from financial institutions. Results: the results suggest that although the concentration has increased in the time frame considered, competitiveness has not deteriorated, reinforcing the argument of seminal references that concentration does not necessarily harm competition. Conclusion: in the absence of academic consensus, this work elucidates the relationship between concentration and competitiveness. Still, it gains relevance by pointing out the role of regulation and credit unions in increasing recent competition. The work thus becomes capable of supporting policies that promote contestability, such as initiatives that relax restrictions on the entry of non-banking institutions and financial technology companies.
Keywords: concentration; competition; credit; banks; credit unions.
1 Universidade de Brasilia, Programa de Pós-Graduaçao em Administraçao, Brasilia, DF, Brasil.
2 Banco Central do Brasil, Brasília, DF, Brasil.
Como citar: Azevedo, M. de A., & Gartner, I. R. (2020). Concentration and competition in the domestic credit market. Revista de Administraçao Contemporánea, 24(5), 380-399. https://doi.org/10.1590/1982-7849rac2020190347
Editor-chefe: Wesley Mendes-Da-Silva (Fundaçao Getulío Vargas, EAESP, Brasil)
Pareeeristas: Flavia Vital Januzzi (Universidade Federal de Juiz de Fora, Brasil)
Luiz Eduardo Gaio (Universidade Estadual de Campinas, Brasil)
Recebido em 21/10/2019
Ultima versäo recebida em 02/03/2020
Aceite em 24/03/2020
INTRODUÇÂO
O mercado financeiro mundial tem vivenciado acentuadas reestruturaçöes e concentraçöes nas últimas décadas (Hankir, Rauch, & Umber, 2011). As fusöes bancárias podem ser explicadas, segundo os autores supra, pela busca de poder de mercado, por ondas de reorganizaçöes societárias, por sinergias operacionais e financeiras, para impedir que competidores comprem alvos preferenciais e por problemas financeiros. Sobretudo após a crise económica global de 2008, autoridades monetárias estimularam a concentraçao de instituiçöes financeiras (IF) o que contribuiu para a maior eficiencia da regulaçao e da supervisao da indústria (Montes, 2014). Fusöes e aquisiçöes se apresentam como alternativas privadas para instituiçöes frágeis permanecerem em funcionamento, sem gerar gasto público e em razao de potencial apropriaçao de beneficios tributários por parte da adquirente (Bulow & Shoven, 1978).
 medida que as IF expandiam suas atividades, através das fronteiras nacionais e da oferta de novos serviços, levantaram preocupaçöes acerca da competitividade, ou seja, da menor oferta de crédito a preços maiores quando comparado ao ambiente de competiçao perfeita. Se as características do setor financeiro, que colaboram para tornar a indústria mais concentrada, podem reduzir a competiçao, implica estimar e analisar a relaçao entre concentraçao e a concorrencia. Nesse aspecto, importa ressaltar que a literatura predominantemente mostra que a concentraçao nao é uma medida apropriada para a competiçao (Bikker, Shaffer, & Spierdijk, 2009).
A percepçao dos agentes económicos acerca dos efeitos da concentraçao sobre o custo da intermediaçao financeira e, ainda, sobre a estabilidade tem incitado estudos científicos. A teoria Estrutura-Conduta-Desempenho (VanHoose, 1985) sugere que a concentraçao, caracterizada pela presença de poucas IF de grande porte eleva a lucratividade mediante cobrança de juros maiores nos empréstimos e pagamento de juros menores aos depositantes, reduzindo o bem-estar social. Resultados empíricos apresentados por Gilbert (1984) sugerem que o aumento na concentraçao provocou elevaçao dos juros médios dos empréstimos e queda dos juros dos depósitos no mercado bancário norte-americano.
Na perspectiva da Estrutura-Eficiente (VanHoose, 1985), em contraste, os beneficios provenientes de economias de escala e de escopo reduzem as taxas de juros dos empréstimos e elevam as dos depósitos pois a lucratividade advém de ganhos de eficiencia. Estudos mais recentes tem respaldado a existencia de uma relaçao inversa entre concentraçao e juros do crédito (Fungácová, Shamshur, & Weill, 2017). Ainda, tem indicado a importancia de diferenciar competiçao e concentraçao. Claessens e Laeven (2004) concluiram que mercados financeiros desenvolvidos, com menor barreira a entrada a novas organizaçöes e a serviços provenientes de inovaçöes financeiras, podem ser competitivos ainda que concentrados.
Tampouco existe consenso entre concentraçao e estabilidade, bem como entre competiçao e estabilidade. Vries (2005) concluiu que concentrar o risco em instituiçöes individuais eleva a frequencia de falhas isoladas. Matutes e Vives (1996; 2000) argumentam que um mercado livre contribui para a estabilidade. Maghyereh e Awartani (2014), por seu turno, apontaram que a concorrencia e a diversificaçao nao contribuem para a saúde dos bancos.
Segundo VanHoose (2010), as teorías concernentes a estruturas intermediárias de mercado, ou seja, entre a competiçao perfeita e o monopólio puro, sao as mais adequadas para explicar o comportamento da indústria bancária. Há, ainda, a competiçao monopolistica (Chamberlin, 1962) em que o monopólio decorre do grau de diferenciaçao dos produtos ofertados.
Diante do exposto, a estimativa e a avaliaçao da competitividade do mercado de crédito nacional conduzidos neste artigo preenchem uma lacuna cientifica, em razao do recorte temporal, dos Tipos de Consolidado Bancário (TCB) considerados e da metodologia aplicada. A literatura teóricoempirica que avalia concorrencia no setor é escassa, sobretudo no tocante aos paises emergentes como o Brasil, em razao da falta de dados e da complexidade do cálculo (Bikker & Haff, 2002; Turk-Ariss, 2010).
Além disso, esta pesquisa ganha relevancia ao elucidar a relaçao entre concentraçao e concorrencia. O nexo entre concentraçao e competitividade nao é matéria pacificada, tanto sob a perspectiva teórica quanto empirica. Â frente de tal discussao, ainda traz a baila a importancia da regulaçao, como sugere a literatura (Akin, Aysan, Borici, & Yildiran, 2013; Claessens & Laeven, 2004), e da atuaçao de instituiçöes nao bancárias sobre o aumento da competiçao recente no mercado de crédito doméstico.
Importa ressaltar que o setor financeiro vivencia uma transformaçao com a entrada recente das empresas de tecnologia financeira, que inclui bancos digitais, fintechs e grandes companhias. As inovaçöes tecnológicas aumentam o potencial de acirrar a concorrencia no mercado de crédito. Em meio a essas mudanças e dos debates academicos revelados, este artigo se propöe a avaliar o nivel de concentraçao e de competiçao, suas causas e potenciáis consequencias, tornando-se relevante tema de pesquisa.
Nesse contexto, este estudo tem como objetivo geral avaliar a organizaçao do mercado de crédito nacional, mediante cálculo e análise de indicadores que refletem concentraçao e concorrencia entre o primeiro trimestre de 2000 e o primeiro trimestre de 2019. O Índice de Herfindahl-Hirschman (IHH) e a Razao de Concentraçao dos Cinco Maiores (RC5), propostos pela literatura e por autoridades reguladoras, conforme VanHoose (2010) e Banco Central do Brasil (BACEN) (2018), sao utilizados para mensurar a concentraçao. O grau de competiçao é estimado via Indicador de Lerner. Com os resultados do IHH, da RC5 e do Índice de Lerner, é possível avaliar a relaçao entre concentraçao e competiçao.
Como objetivos específicos, essa pesquisa compara a concorrencia entre os diferentes TCB (b1, b2, b3S e n1) que compöem o setor bancário e o nao bancário nacional, com o intuito de identificar qual o grupo de IF contribui para a competiçao. Ainda, avalia-se a competitividade por segmentaçao (S1, S2, S3, S4 e S5), assim classificadas pela Resoluçao n° 4.553/2017 (Conselho Monetário Nacional [CMN], 2017) de acordo com o porte, a atividade internacional e o perfil de risco da organizaçao. Espera-se que a segmentaçao, implementada pela regulaçao prudencial proporcional de requerimento de capital, tenha contribuido para a melhora da concorrencia.
Cabe enfatizar que a literatura sobre competitividade bancária inovou com o desenvolvimento do método de Lerner (Delis & Tsionas, 2009; Lerner, 1934), utilizado neste artigo. Considerado preferível a proxies como a Estatística-H (Turk-Ariss, 2010), o Indicador de Lerner estima o poder de mercado de uma empresa pela diferença entre o preço praticado pela organizaçao e o seu custo marginal, também conhecido como margem ou mark-up. O método alinha-se ao conceito de poder de mercado dado pela capacidade da instituiçao financeira cobrar juros no crédito acima do custo marginal (VanHoose, 2010).
A primeira hipótese do presente estudo é a de que o aumento da concentraçao na industria financeira nacional atuante no crédito nao implica reduçao da competitividade, no recorte temporal considerado. Avalia-se, nesse aspecto, potenciais explicaçöes para a trajetória do Indicador Lerner, com amparo na literatura científica. Assim, como segunda hipótese, espera-se que aspectos regulatórios tenham contribuido para a melhora recente da concorrencia. A terceira hipótese consiste em buscar evidencias de que a competitividade entre os diversos grupos de IF que compöem o mercado nacional de crédito é heterogenea, e, assim, as margens aplicadas pelos bancos sao maiores que as praticadas pelas cooperativas de crédito.
A próxima seçao apresenta o referencial teórico acerca da organizaçao industrial bancária. Na seçao subsequente, há uma descriçao do método teórico utilizado para estimar os indicadores de concentraçao e de competiçao. Em seguida, a seçao 4 apresenta a aplicaçao do método, desde a seleçao da amostra, a definiçao das proxies até as técnicas empregadas para estimaçao da regressao do custo total e para a análise dos resultados. A seçao 5 dedica-se a análise do modelo econométrico e a apresentaçao dos resultados dos índices, contendo, ainda, discussöes sobre possíveis causas. Por fim, sao tecidas as conclusöes, limitaçöes, implicaçöes práticas e sugestöes para estudos futuros.
REFERENCIAL TEÓRICO
A análise de política económica da organizaçao industrial bancária tem sido guiada pela StructureConduct-Performance (SCP) e pela EfficientStructure Theory (ES), segundo VanHoose (2010). Na SCP, a maior concentraçao eleva a lucratividade mediante cobrança de juros maiores nos contratos de créditos e pagamento de juros menores aos depositantes, reduzindo o bem-estar da populaçao. Na ES, o aumento dos lucros pode ser explicado pela eficiencia, advinda de ganhos de escala e de escopo. Nesse contexto, nao há uma relaçao positiva clara entre concentraçao e desempenho. Aspectos relacionados a contestabilidade do mercado tem se mostrado significantes para explicar a competiçao (Claessens & Laeven, 2004).
Vale destacar, ainda, a New Empirical Organization (NEIO) que mede a competiçao por meio da estimativa de indicadores, sem suposiçöes exante acerca da estrutura ou da conduta de mercado. Nessa abordagem, destacam-se o método PanzarRosse (1987) e o de Lerner (1934) que podem ser formalmente derivados de condiçöes de equilíbrio supondo maximizaçao dos lucros (Bikker, Shaffer e Spierdijk, 2009).
Evidencias empíricas dao suporte a SCP, a ES e a NEIO. Sob a SCP, resultados empíricos apresentados por Gilbert (1984) sugerem que 10% de aumento na concentraçao elevou os juros dos empréstimos entre 0,1 e 11 pontos bases e reduziu os dos depósitos dos bancos nos EUA entre 0,1 e 18. Segundo Shaffer e Srinivasan (2002), a concentraçao contribuiu para as elevadas taxas dos empréstimos praticadas no mercado bancário estadunidense. A perspectiva da SCP baseia-se no modelo banco dominante, ou seja, na suposiçao de que grandes bancos detem vantagens sobre rivais menores no que tange aos custos e, portanto, apresentam um comportamento anticompetitivo no tocante aos preços.
Sob a égide da ES, os beneficios provenientes de economías de escala e de escopo reduzem as taxas de juros dos empréstimos e elevam as dos depósitos. Nessa abordagem, os juros cobrados pelos bancos maiores, que arcam com menores custos unitários, restringem as taxas praticadas por rivais menores, resultando em taxas de empréstimo médias mais baixas e de depósito mais altas. Lucros mais elevados das grandes IF devem-se a eficiencia, nao as condutas predatórias destinadas a dificultar a entrada de novas instituiçöes.
Estudos recentes tem respaldado a existencia de uma relaçao inversa entre concentraçao e juros do crédito (Fungácová, Shamshur, & Weill, 2017; Silva, 2014; Tonooka & Koyama, 2003) em razao de fatores como regulaçao, rigidez informacional e educaçao financeira limitada. Ao aplicar o método Panzar-Rosse, Claessens e Laeven (2004) nao encontraram evidencias de que competiçao se relaciona com concentraçao nos mais de 4.000 bancos em 50 países. Concluindo que mercados financeiros desenvolvidos mais contestáveis a novas organizaçöes e a serviços tendem a serem competitivos mesmo que concentrados.
No que concerne ao risco, Berger, Leora e TurkAriss (2008), ao examinar mais de 8.000 bancos em 23 países entre 1999 e 2005, encontrou um menor grau de exposiçao ao risco geral em bancos que possuiam maior poder de mercado. Já Vries (2005), que propôs um modelo teórico de risco sistemico advindo das interconexöes do mercado de depósito, concluiu que concentrar o risco em instituiçöes individuais eleva a frequencia de falhas isoladas. Assim, sugere a segregaçao do risco em múltiplas instituiçöes.
Matutes e Vives (1996; 2000) desenvolveram modelos que associam o colapso bancário e a competiçao imperfeita no mercado de depósito, em consequencia, uma maior competitividade seria salutar. Allen e Gale (2004) argumentaram que a competiçao perfeita no mercado interbancário reduz a estabilidade. Maghyereh e Awartani (2014) apontaram que a concorrencia e a diversificaçao nao contribuem para a saúde dos bancos.
A atividade bancária viabiliza a intermediaçao financeira entre poupadores e investidores, contudo, traz riscos cuja origem está na captaçao de depósitos resgatáveis a qualquer tempo para oferecer crédito. Aspectos relacionados a competiçao, como a eficiencia, embora socialmente desejáveis, podem criar riscos aos bancos individualmente e a nivel sistemico. Se a regulamentaçao que cria barreiras a entrada, tornando o setor mais concentrado e, possivelmente, menos competitivo, reduz o risco de insolvencia, é uma pergunta que implica decifrar, primeiramente, os niveis de concentraçao e de competiçao (VanHoose, 2010).
As estruturas intermediárias de mercado sao as mais adequadas para explicar a indústria bancária (VanHoose, 1985). A abordagem de Cournot, que assume a existencia de alguns concorrentes oferecendo produtos homogeneos (Dasgupta & Stiglitz, 1981), pode ser usada para examinar esse mercado. Trata-se de modelo de oligopólio em que a oferta de crédito e de depósito depende da estimativa da quantidade produzida pelos concorrentes (Pindyck & Rubinfeld, 2010). No oligopólio, há barreiras a entrada a novos participantes. Outra abordagem consiste no modelo de competiçao monopolistica (Chamberlin, 1962) em que há concorrentes e nao há restriçöes para novos entrantes. O poder do monopólio decorre do grau de diferenciaçao dos produtos ofertados.
Nesses ambientes intermediários de mercado, as taxas de juros dos empréstimos tendem a ser maiores e as dos depósitos menores, quando comparadas aos praticados em competiçao perfeita. Em 2015, Tabak, Gomes e Medeiros (2015) haviam sinalizado que a concentraçao nas carteiras de crédito aumenta a eficiencia de monitoramento uma vez que facilita a recuperaçao de empréstimos tornando o banco menos suscetivel ao risco.
O Índice de Herfindahl-Hirschman (IHH) e a Razao de Concentraçao dos Cinco (RC5) sao propostos pela academia e por autoridades monetárias para medir a concentraçao do sistema financeiro (BACEN, 2017; 2018; VanHoose, 2010). Quanto ao nivel de competiçao, recomenda-se a estimativa dos indicadores de Lerner e de Boone (BACEN, 2017; 2018; Boone, 2008; Lerner, 1934).
O Índice de Lerner (Berger, Klapper, & TurkAriss, 2009; Lerner, 1934) mede a capacidade de um banco maximizador de lucro exercer poder de mercado impondo juros de empréstimos elevados em relaçao ao seu custo, sem perda expressiva de clientes. Tal capacidade depende da elasticidade da demanda por crédito em relaçao aos juros. Em ambientes competitivos, espera-se uma elevada elasticidade de juros da demanda por crédito e, portanto, dificuldades em elevar as taxas. Bancos com poder de mercado, por outro lado, tendem a estabelecer suas taxas aplicando um mark-up ótimo sobre seu custo marginal em emprestar.
Assim quanto maior o poder de mercado da instituiçao financeira, maior a margem de lucro auferida e maior o valor do Indicador de Lerner. Por exemplo, suponha que a taxa de encargos financeiros cobrada do tomador de crédito seja de 20% ao ano e o custo de conceder uma unidade adicional de crédito, conhecido como custo marginal, seja de 10% ao ano. Nessas condiçöes, o mark-up sobre o custo marginal será de 10 pontos percentuais e o índice de Lerner será 0,50 ou 50% do preço do crédito, advindo do quociente entre 10 e 20.
Assim, o Indicador de Lerner captura o quanto as taxas cobradas excedem o custo marginal, em termos relativos, ou seja, em percentual do preço. Idealmente o Indicador deve levar em consideraçao as taxas praticadas nas operaçöes de empréstimos e nos depósitos separadamente o que muitas vezes näo é viável em razäo de obstáculos em relaçao aos dados (Turk-Ariss, 2010). Diante disso, o Indicador tem sido construido na literatura de modo a abranger a totalidade da atividade da IF (Angelini & Ceterolli, 2003), o chamado Lerner convencional.
O índice de Boone (Boone, 2008) se propöe a medir a sensibilidade da participaçâo da IF no mercado em relaçâo a variaçöes no seu custo marginal. Em um ambiente competitivo, aumentos no custo marginal tendem a provocar elevaçöes nas taxas cobradas nos empréstimos, comparativamente as demais instituiçöes, com consequente reduçâo da sua participaçâo no mercado. Quanto mais negativo o índice de Boone, maior o nivel de competiçâo no setor. Os indicadores de Lerner e de Boone säo considerados métricas complementares para mensurar o nivel de competiçâo (BACEN, 2017).
O MODELO TEÓRICO
Esta seçâo descreve o método teórico utilizado para mensurar os indicadores que refletem a concentraçâo e a competitividade nos segmentos bancário e näo bancário doméstico para os empréstimos concedidos no Brasil. No tocante a concentraçâo, esta pesquisa calcula o Índice de Herfindahl-Hirschman (IHH) e a Razäo dos Cinco Maiores (RC5). Ambos medem participaçöes de mercado, sem implicaçöes, a priori, acerca do comportamento competitivo das instituiçöes.
O IHH é obtido pelo somatório do quadrado da participaçâo na forma decimal de cada IF no mercado de crédito, conforme mostra a Equaçâo (1). Seus resultados assumem valores entre 0 (ausencia de concentraçâo) e 1 (totalmente concentrado), sendo que estimativas entre 0,1000 e 0,1800 representam moderada e, acima de 0,1800, elevada concentraçâo (BACEN, 2017, 2018, VanHoose, 1985).
... (1)
A RC5, calculada de acordo com a Equaçâo (2), consiste na participaçâo das 5 (cinco) maiores instituiçöes no total dos empréstimos oferecido pelo setor bancário e näo bancário. Os resultados da RC5, assim como do IHH, também variam entre 0 (ausencia de concentraçâo) a 1 (concentraçâo máxima).
... (2)
No que cinge a competiçâo, o Indicador de Lerner estima o poder de mercado pela diferença entre o preço cobrado no produto crédito e o custo marginal da IF, em percentagem do preço, como mostra a Equaçâo (3) (BACEN, 2017; 2018; Turk-Ariss, 2010; VanHoose, 1985). Seus resultados se däo em dimensöes continuas que variam desde a competiçâo plena (Lit= 0) a ausencia de competiçâo (Lit= 1). Se a IF busca maximizar lucro, o Índice apresenta resultado näo negativo. Contudo, se o banco tiver outros objetivos, seu Lerner pode ser negativo, mesmo que aufira lucro.
... (3))
Onde:
L: indicador de Lerner da IF no período t;
Cmarg.t: custo marginai da IF. em t (obtido a partir da derivada parcial da funçâo custo totai dada pela E&acedil;uaçdo 5); e
P.: preço do produto de crédito da IF. em t, estimado pela razäo entre suas receitas de operaçöes de crédito e o totai do estoque de crédito.
A mensuraçâo da competitividade requer a estimativa do custo marginal, que corresponde ao incremento do custo total em ofertar uma unidade adicional de empréstimo. Silva (2014) ressalta que somente agentes internos da organizaçâo conhecem os custos marginais. Diante disso, a literatura científica recomenda estimar a funçâo transcendental logarítmica (translog) do custo total, dado pela Equaçâo (4) (Silva, 2014; Tabak, Gomes, & Medeiros, 2015; Turk-Ariss, 2010). A translog consiste em forma funcional geral introduzida por Christensen, Jorgenson e Lau (1973) considerada flexível, com termos lineares e quadráticos, podendo ser usada para testar hipóteses da teoria da firma. Usualmente interpretada como uma aproximaçâo por uma série de expansäo de Taylor de segunda ordem, permite trabalhar com valores discricionários para a elasticidade de substituto entre pares de insumos.
... (4)
Onde:
TCit: custo total da IF. no período t;
w: custo operacional;
w2 : custo de captaçâo;
y.ļt: vetor de produtos financeiros envolvendo crédito (j=1), ativos líquidos (j=2) e outros ativos (j=3);
Dtt: vetor de variáveis dummies da IF.; e
£it = v.t + u : termo de erro, onde as perturbaçöes v säo normal e independentes distribuidas; e
u ~ N(0,o) e var(u ) = o2.
No campo da teoria da firma, a funçao custo é considerada uma funçao de produçao, que relaciona produtos aos respectivos fatores de produçao utilizados no processo produtivo. Estimados os coeficientes da funçao de produçao da Equaçao (4), obtidas via modelo econométrico de regressao múltipla, é possível mensurar o custo marginal das operaçöes de crédito para cada IF em cada período, conforme Equaçao (5).
... (5)
APLICAÇÂO DO MÉTODO
Definiçao da amostra e fonte de dados
O IHH, a RC 5 e o Índice de Lerner sao mensurados nesta pesquisa na periodicidade trimestral, do primeiro trimestre de 2000 (I tri 2000) ao primeiro trimestre de 2019 (I tri 2019), incorporando, portanto, a última crise financeira mundial. A janela de tempo de aproximadamente 20 anos (77 trimestres) pode ser considerada suficiente para acomodar ciclos de alta e de baixa no mercado de ativos e na economia. Além disso, trata-se do maior período disponível para as informaçöes contábeis publicadas no banco de dados do BACEN, o IF.data (https://www3.bcb. gov.br/ifdata/, recuperado em 30 de Julho, 2019), até o momento da submissao desse artigo.
Os índices de concentraçao e de competiçao contemplam as instituiçöes financeiras isoladas entre o I tri 2000 e o I tri 2019 pertencentes ao segmento bancário, tipo b1 e b2, e nao bancário, tipo n1 e b3S, doravante, sistema, conforme explicita a Tabela 1. As instituiçöes dos tipos b1, b2, b3S e n1 correspondem a cerca de 93% do mercado de crédito no final de 2018, conforme dados disponíveis do IF.data.
O segmento bancário TCB b1 é representado, segundo a autoridade monetária (BACEN, 2018), pelos bancos comerciais, múltiplos com carteira comercial e caixas económicas. Os bancos múltiplos sem carteira comercial e os de investimento compöem o segmento bancário tipo b2. As cooperativas de crédito singular e as instituiçöes nao bancárias de crédito sao representadas por b3S e n1, respectivamente.
Dessa forma, foi possível formar um painel nao balanceado com informaçöes de 1.720 Instituiçöes Individuáis. Segundo a autoridade reguladora, essas organizaçöes compreendem as instituiçöes financeiras e demais instituiçöes autorizadas a funcionar pelo Banco Central separadas por personalidade jurídica (CNPJ), em nivel nao consolidado. Nessa configuraçao, as participaçöes societarias no Brasil e/ou no exterior e as agencias no exterior sao registradas como investimento por meio do método da equivalencia patrimonial.
Vale ilustrar que as instituiçöes nao bancárias de crédito (n1) sao representadas por organizaçöes como sociedades de arrendamento mercantil, companhias hipotecárias e sociedade de crédito ao microempreendedor. As cooperativas de crédito singular (b3S) realizam diretamente o atendimento a clientes. Embora as cooperativas nao visem lucro, buscam maximizar o benefício usufruído por seus cooperados e manter seus projetos em níveis sustentáveis, o que permite avaliar a sua competitividade por meio do Indicador de Lerner.
Os Relatórios de Economia Bancária do Banco Central (BACEN, 2017; 2018) consideram, na estimativa do Índice de Lerner, tanto as cooperativas de crédito quanto as instituiçöes nao bancárias de crédito. A estimativa por parte do BACEN nao contempla os bancos de desenvolvimento. Os bancos de desenvolvimento, classificados como TCB b4, também nao sao considerados nesta pesquisa pois nao visam lucro, tampouco maximizam beneficios de seus representantes. Essas instituiçöes representavam 8,4% das operaçöes de crédito líquidas de provisao no III tri 2018.
Variáveis e proxies do estudo
Para estimar os índices de concentraçao e de concorrencia, fez-se uso de informaçöes contábeis trimestrais das Instituiçöes Financeiras Individuais participantes do sistema publicadas pelo BACEN no banco de dados IF.data. A seleçao das proxies baseouse no Relatório de Economia Bancária (BACEN, 2017; 2018), em Ornelas, Silva e VanDoornik (2020), em Turk-Ariss (2010) e VanHoose (2010), conforme detalha a Tabela 2.
Técnicas de estimativa e de análise
A partir da amostra contendo informaçöes contábeis de 1.720 IF ao longo de 77 trimestres, formou-se um painel nao balanceado com 80.849 dados considerados na estimativa da variável dependente custo total cuja expressao geral é representada pela Equaçao (6). Um painel é formado quando se combinam séries de tempo com dados transversais. O Statistical Analysis Software Studio OnDemand for Academics (SAS) foi utilizado para construir a base de dados e para obter os indicadores de concentraçao de competiçao.
... (6)
Onde:
yit: custo total da IF. no período t;
X.jt: vetor de produtos financeiros e preços dos insumos da IF.
no período t;
i: unidades cross-section; e
t: unidades de série de tempo.
Na funçao translog do custo total, os fatores de produçao sao quantificados por meio do logaritmo natural dos valores medidos em termos relativos, pois representam preços dos insumos, conforme BACEN (2018), Ornelas et al. (2020), Maghyereh e Awartani (2014) e Turk-Ariss (2010). Aos valores absolutos dos produtos financeiros também sao aplicados o logaritmo neperiano. As escalas logarítmicas permitem reduzir grandezas de elevada magnitude para uma escala menor.
Os parámetros da funçao translog do custo total sao estimados mediante regressao linear múltipla aplicada aos dados dispostos no painel nao balanceado, formado via proxies das variáveis que integram o modelo representado pela Equaçao (4). Na sequencia, esses parámetros sao utilizados na funçao do custo marginal do produto crédito para cada IF em cada período, de acordo com a Equaçao (5). Com os resultados do custo marginal e do preço das operaçöes de empréstimo, cujo cálculo é indicado na Tabela 1, obtém-se o Indicador de Lerner.
Os índices de concentraçao, IHH e RC5, sao apurados de acordo com as Equaçöes (1) e (2) e proxies apresentadas na Tabela 1. De posse dos indicadores de concentraçao e de competitividade, mensurado pela média e seus quartis, é possível promover análises acerca do comportamento de cada um deles em separado e conjuntamente. Destaque foi dado ao período que sucede a última crise financeira mundial e a implantaçao da regulaçao prudencial de requerimento de capital. Ainda, em face da heterogeneidade da distribuiçao do Lerner, compara-se os níveis de concorrencia observados em cada TCB.
ANÁLISE EMPÍRICA, DESCRITIVA E RESULTADOS
Estimaçao do custo total
Para identificar o nivel de competiçao do sistema faz-se necessário, primeiramente, estimar o custo total (TC) via modelo econométrico de regressao múltipla onde: TC = f (custo operacional, custo de captaçao, produtos financeiros).
Ao regredir uma variável de série temporal sobre outras variáveis que também seguem série de tempo, é necessário que as séries envolvidas sejam estacionárias, caso contrário, um alto coeficiente de determinaçao (R2) pode refletir uma relaçao espúria. Um processo estocástico estacionário ocorre se a média e a variáncia forem constantes ao longo do tempo e o valor das covariáncias entre dois períodos depender apenas da defasagem ente eles.
Maddala e Wu (1999) e Choi (2001) propuseram o teste desenvolvido por Fisher (1932) o qual baseia-se na combinaçao dos valores do p-valor e do Augmented Dickey-Fuller (ADF) para cada unidade cross-section. Trata-se de teste nao paramétrico cuja hipótese nula (H0) é a de que todos os painéis contem raiz unitária. Os resultados apresentados pelo SAS indicam rejeiçao de H0 ao nivel de significáncia estatistica de 1%, o que era esperado para variáveis medidas em termos relativos.
Vale ressaltar que os quatro tipos de teste Fisher-Type rejeitaram a hipótese nula de que todos os painéis contem raizes unitárias ao nivel de significáncia de 1%: Fisher Test Qui-quadrado, Asymptotic Fisher test, Inverse Normal Test e Logit Test. Choi (2001) recomenda o Inverse Normal Test, correspondente a estatistica Z (distribuiçao normal), nas análises. Observa-se, ainda, que o Logit Test L· (distribuiçao t) corrobora o teste Z, o que geralmente ocorre. Por conseguinte, prevalece a hipótese alternativa da estacionariedade dos painéis.
Quanto ao método de estimaçao dos parámetros, modelos construidos a partir de painel utilizam ferramentas especificas de acordo com a estrutura do termo de erro. O termo de erro (£ ), que captura o que deixou de ser explicado sobre a variável dependente, decompöe-se no termo que varia no tempo das unidades de observaçao (v )e no distúrbio das unidades especificas (u). O erro que reflete características individuáis nao observadas pode afetar a variável dependente.
O teste de especificaçao de Hausman (1978) foi utilizado para avaliar o ajuste de modelos de efeitos fixos e de efeitos aleatórios. A hipótese nula de ausencia de correlaçao entre os efeitos (individuais ou temporais) e os regressores foi rejeitada ao nivel de significancia de 1%, favorecendo a especificaçao de efeitos fixos. Sob H0, o estimador de efeitos fixos é consistente (convergente assintoticamente para os valores reais dos parámetros da populaçao), mas ineficiente (nao possui variáncia mínima), enquanto o estimador de efeitos aleatórios é consistente e eficiente. Sob a hipótese alternativa apenas o estimador de efeitos fixos permanece consistente, pois há correlaçao entre os efeitos e as variáveis explicativas.
Verifica-se, ainda, que o teste F de efeitos individuais sugere heterocedasticidade nas observaçöes, o que fortalece a escolha por um modelo em painel de efeitos fixos. Ao nivel de 1% de significáncia, a hipótese nula de homocedasticidade foi rejeitada, concluindo-se, portanto, que os interceptos nao sao todos iguais, satisfazendo a suposiçao do modelo de n interceptos diferentes. Os estimadores de efeitos fixos consistem na opçao mais adequada para modelar dados em painel quando o intercepto é correlacionado com as variáveis explicativas em qualquer período de tempo.
Uma vez atendidos os pressupostos econométricos, verifica-se a significáncia estatística dos coeficientes e as métricas de ajuste global do modelo de estimaçao do custo total (TC). Em seguida, o custo marginal (Cmag) é calculado mediante derivaçao da funçao custo total em relaçao as operaçöes de crédito. O Índice de Lerner, portanto, pode ser calculado pela diferença entre o preço agregado e o custo marginal, em proporçao do preço. Os resultados dos testes e os parámetros da regressao linear normal múltipla da variável dependente custo total (TC), com intervalo de confiança de 95%, considerando efeitos fixos, encontram-se na Tabela 3.
No que tange ao ajuste global do modelo, o R2 (R-Square), que representa o percentual da variável endógena explicado pelas exógenas, mostrou-se elevado. A Root Mean Square Error of Aproximation (RMSE) ou raiz do erro quadrático médio, que corresponde a quantidade de erro de aproximaçao populacional em uma matriz de covariancia, foi calculado em 0,3982. Quanto mais baixo seu valor, maior a acurácia do modelo.
Localmente, o modelo se mostrou bem ajustado pois o teste 't de student' apontou para a significancia estatística dos coeficientes das variáveis exógenas, indicando, portanto, que os parámetros säo estatisticamente diferentes de zero ao nivel de significáncia de 1%. Em outras palavras, a probabilidade de cometer o erro tipo I, ou seja, de rejeitar a hipótese nula, H0: L=0, sendo esta verdadeira, encontra-se em nivel aceitável (p-valor < 1%). Além disso, os parámetros das variáveis independentes estäo associados a um baixo erro padräo.
Vale registrar que ao atender aos pressupostos econométricos, é possível interpretar os sinais e a magnitudes dos coeficientes da funçâo translog do custo (Albuquerque, 1987). Taxas médias de crescimento dos preços dos fatores de produçâo, elasticidades-preço e elasticidades de substituiçâo säo conceitos relevantes que podem ser analisados via parámetros da regressäo do custo total. Tais interpretaçöes microeconômicas tem o potencial de constituir tema de estudo específico que vise aprofundar a avaliaçâo da eficiencia bancária no mercado de crédito.
Análise descritiva
Para melhor compreensäo dos resultados e das análises dos indicadores de competiçâo, que seräo analisados na seçâo seguinte, é importante apresentar as estatísticas descritivas referentes a cada TCB considerados neste artigo. A Tabela 4 apresenta a análise descritiva do Indicador de Lerner cujos resultados sugerem a existencia de uma distribuyo assimétrica negativa (ou a esquerda), ou seja, há maior concentraçäo de valores superiores a média. Vale acrescentar, ainda, que as cooperativas de crédito singular (b3S) apresentaram o menor mark-up médio e mediano entre os TCB considerados. Enquanto as instituiçöes näo-bancárias de crédito (n1) registraram o maior mark-up médio e mediano no período.
Resultados do IHH, do RC5 e do Indicador de Lerner
Índices de concentraçao versus de competiçao
A literatura científica näo apresenta consenso sobre o nexo entre competyo e concentraçäo no ámbito da industria financeira. Os resultados do IHH sugerem que a concentraçäo do sistema bancário e näo bancário atuante no crédito (b1+b2+b3S+n1) se elevou de baixa (0,07) para moderada (0,13) ao longo do período amostral considerado. No que se refere a RC5, Caixa, BB, Itaú-Unibanco, Bradesco e Santander controlavam 72,2% dos créditos no I tri 2019, ante 45,4% de participaçäo no I tri 2000.
A despeito do aumento da concentraçäo, a média do Indicador de Lerner do sistema, ponderada pelo volume de crédito ofertado por cada IF em re^äo ao TCB que pertence, encerrou o I tri 2019 em patamar semelhante ao do I tri 2000, de 0,8. Portanto, a concorrencia näo se deteriorou no período. Ao analisar a competitividade pela mediana do Lerner, que descarta os maiores e menores Índices, há uma melhora da competyo. A corre^äo entre a mediana do Índice de Lerner e o IHH foi igual a 4,8% e entre o Lerner e a RC5, a -0,72%. As Figuras 1 e 2 permitem visualizar o comportamento dos indicadores de concentraçäo comparativamente ao de competyo.
A concentraçao explica-se, em parte, pela necessidade de ganhos de escala, de altos investimentos e da complexa gestao de riscos do setor. Além disso, com a crise de 2008 o mercado tornou-se mais concentrado, com eventos de fusöes e de aquisiçöes relevantes. O aumento também foi percebido na maior parte dos países com a eclosao da instabilidade financeira internacional, segundo estudo do Bank for International Settlements (BIS) (2018).
Após a turbulencia financeira internacional, mais específicamente a partir do III tri 2009, os mark-ups de crédito subiram, ou seja, a competiçâo deteriorou-se até 2016, mesmo com a queda da taxa Selic em meados de 2009. Contudo, o aperto monetário iniciado em meados de 2013, com a Selic a 7,5% ao ano, até o final de 2016, com a Selic a 14,5% ao ano pode ter contribuido para a elevaçao das margens dos empréstimos concedidos pelo setor. Além do aumento do custo de oportunidade, vale lembrar que as IF enfrentaram elevaçao da inadimplencia em razao da crise económica doméstica nesse periodo.
Os indicadores de concentraçao, porém, mostraram ser relativamente mais persistentes que o de concorrencia, que já voltou ao nivel anterior a crise (III tri 2008). A queda dos juros desde o final de 2016 até o inicio 2019, em mais de 8 pontos percentuais, pode ter influenciado na reduçao dos mark-ups de crédito a partir de 2017. Além disso, a competiçao pode ter aumentando devido a aspectos regulatórios, como a proporcionalidade da regulaçao prudencial de requerimento de capital, como sugere a literatura mais recente (Claessens & Laeven, 2004).
A Resoluçao n° 4.553/2017 (Conselho Monetário Nacional [CMN], 2017), publicada em 30 de janeiro de 2017, separou as IF em cinco segmentaçöes. Na segmentaçao S1, encontramse os bancos cujo porte, medido pela exposiçao total, é igual ou superior a 10% do PIB ou que sejam internacionalmente ativos. O S2 agrupa bancos de tamanho inferior a 10% do PIB e demais IF com tamanho superior a 1% do PIB. O S3 contém bancos e instituiçöes nao bancárias de porte entre 0,1% e 1% do PIB. Os bancos e as IF nao bancárias de tamanho inferior a 0,1% do PIB se enquadram em S4. Desse último, as cooperativas de crédito e as instituiçöes nao bancárias que tenham perfil de risco simplificado se enquadrarao no S5.
Assim, os requisitos exigidos nos Acordos de Basileia tornaram-se válidos para os bancos com atividade internacional relevante, reunidos no segmento S1. Para as instituiçöes classificadas nas outras segmentaçöes, as normas passaram a serem aplicadas proporcionalmente, contribuindo para aumentar a competiçao no mercado brasileiro. Ao seguir uma regra prudencial de complexidade adequada as suas atividades, a IF pode competir de maneira mais igualitária com as demais.
A análise da Figura 3 apoia a perspectiva de que as margens do crédito se reduziram a partir a Regulaçao sobretudo nos segmentos cujos requerimentos foram flexibilizados. As cooperativas de crédito e as instituiçöes nao bancárias cujo perfil de risco simplificado se enquadraram no S5 registram as maiores quedas do Índice de Lerner.
A heterogeneidade na distribuiçâo do Índice de Lerner revela a importancia de apresentar o Indicador de competitividade em termos de quartis, ainda, incita uma avaliaçao de cada TCB separadamente, conforme mostram as próximas seçöes.
Indice de competiçdo
As instituiçöes maximizadoras de lucros com relativo poder de mercado buscam aplicar um markup sobre seus custos marginais em ofertar crédito. Em ambientes competitivos a maior elasticidade da demanda por crédito em relaçâo aos juros tende a limitar o valor das taxas doa empréstimos. Portanto, quanto maior o mark-up, menor o grau de concorrencia no mercado. O Indicador de Lerner dos segmentos bancário b1 e b2 e do segmento näo bancário b3S e nl, apresentou trajetória representada na Figura 4. A média foi ponderada pelo volume de crédito ofertado por cada IF em relaçâo ao TCB que pertence. A mediana ou 2° quartil, que consiste no valor até o qual se encontra 50% da amostra ordenada, é representada pela legenda p_50. O 1° quartil, designado por p_25, é o valor que detém 25% das observaçöes da amostra abaixo e 75% acima, enquanto o 3°quartil (p_75) deixa 75% das observaçöes abaixo e 25% acima.
A média ponderada do Indicador de Lerner segue dinámica semelhante a apresentada pela mediana, todavía, o nivel do indicador médio mostra-se superior na maior parte do periodo. Tal resultado indica que que IF de grande porte, como os bancos tipo b1, possuem Lerner na cauda superior da distribuiçâo.
Indice de competiçao das instituiçöes bancárias
Dada a releváncia das instituiçöes bancárias tipo bl na concessäo do empréstimo total, seus Índices de Lerner médios acompanham a trajetória e o nivel da média do sistema, conforme mostra a Figura 5. A média do mark-up tanto para bl quanto para b2, embora tenha variado ao longo da série, encerrou o I tri 2019 praticamente nos mesmos patamares registrados no inicio do periodo amostral, como pode ser visualizado na Figura 5 e 6.
A partir do III tri 2009, ou seja, 1 ano após a eclosäo da crise financeira mundial, os Índices sobem, contribuindo para a piora da competiçâo do sistema identificada na seçâo 5.3.1. Vale notar, ainda, o aumento da dispersäo do Indicador de competiçâo para b1 e para b2.
Desde o IV tri de 2016, no entanto, os bancos apresentaram queda dos seus mark-ups. Vale ressaltar que o indicador já reflete as operaçöes de crédito realizadas pelos bancos digitais, a saber: ING Bank, Banco Original, Banco BS2, Banco Inter, Banco Modal e Banco Neon. Juntos, os bancos digitais representavam 0,8% do total dos empréstimos liquidos de provisäo concedidos pelo sistema.
Índice de competiçdo das instituiçöes nao bancárias
No tocante ao segmento näo bancário, a média do mark-up das cooperativas de crédito singular (b3S) apresentou queda no período analisado pela presente pesquisa, de 0,80 para 0,67, como mostra a Figura 7. Após 2 anos do início da crise financeira mundial essas instituiçöes elevaram suas margens de taxas sobre o crédito ofertado, mas por um curto periodo de tempo. A partir de 2017, assim como ocorreu no segmento bancário, registraram aumento da competitividade. A queda recente do Indicador de Lerner das IF nao bancárias pode ter sido influenciada pela flexibilizaçao da política monetária e pela entrada em vigor da regulaçao prudencial de requerimento de capital proporcional Embora as cooperativas nao visem lucro, buscam maximizar o beneficio usufruído por seus cooperados e manter seus projetos sustentáveis, o que permite avaliar sua competitividade por meio do Indicador de Lerner. Interessante notar que, desde o começo do recorte temporal considerado, as cooperativas se destacaram por apresentar níveis médios de competitividade superiores que b1, b2 e n1, como mostra a Figura 8.
As cooperativas, embora representem apenas 3,0% dos empréstimos concedidos pelo sistema (III tri 2018), tem crescido em participaçao (BACEN, 2017), aumentando o potencial de acirrar a concorrencia no mercado de crédito. A autoridade monetaria destaca, ainda, que os juros praticados por essas instituiçöes sao inferiores aqueles praticadas pelo segmento bancário tipo b1. Uma possível explicaçao está no aumento da profissionalizaçao e no consequente ganho de escala, bem como na desobrigaçao da busca de lucro, nos beneficios fiscais e na retroalimentaçao positiva entre cooperados e cooperativa.
As instituiçöes nao bancárias de crédito (n1) mantiveram a média ponderada de seus mark-ups em niveis elevados ao longo de toda a série. Além disso, seus Índices de Lerner foram superiores aos apresentados pelos demais TCB, sugerindo a menor competiçao desse grupo, como mostra a Figura 8. Essas instituiçöes sao responsáveis por 3,9% das operaçöes de crédito (III tri 2018).
CONCLUSÄO
Os indicadores de concentraçao relativos a industria financeira doméstica atuante no crédito apresentaram aumento consistente entre o I tri 2000 e o I tri 2019, especialmente a partir de 2008. O IHH passou de baixo grau de concentraçao no início do período para moderado. As cinco maiores instituiçöes, que controlavam 45,4% do mercado de crédito, passaram a controlar 72,2% ao final da série. O aumento da concentraçao do sistema pode ser explicado por questöes estratégicas, como a busca por ganhos de escala e de escopo, bem como pela necessidade de altos investimentos e da complexa gestao de riscos do setor. Após a crise de 2008, fusöes e aquisiçöes relevantes contribuíram para a concentraçao, movimento observado e grande parte dos países (Bank for International Settlements, 2018).
A despeito do aumento da concentraçao, a mediana do Indicador de Lerner reduziu-se de 0,83 no I tri 2000 para 0,68 no I tri 2019, ou seja, a concorrencia aumentou. A média do Indicador, ponderada pelos empréstimos concedidos de cada IF no respectivo TCB, encerrou a série praticamente no mesmo patamar, sugerindo que instituiçöes de grande porte nao apresentaram reduçao nos seus mark-ups de crédito.
A comparaçao entre os indicadores de concentraçao e de competividade apoia a primeira hipótese de pesquisa, reforçando, ainda, a teoria Estrutura-Lucratividade, que argumenta nao haver, necessariamente, um trade-off entre concentraçao e competiçao (VanHoose, 2010). Nessa perspectiva, ganhos de eficiencias proporcionados por fusöes e aquisiçöes permitem que as IF reduzam juros sem perda de lucratividade. A existencia de uma relaçao inversa entre concentraçao e juros do crédito tem prevalecido na literatura atual, de acordo com Fungácová, Shamshur e Weill (2017). Claessens e Laeven (2004) mostraram que mercados financeiros com menor barreira a entrada a novas organizaçöes e a inovaçöes financeiras podem ser competitivos e concentrados.
Vale ressaltar que a competiçao da industria financeira atuante no crédito deteriorou-se após a eclosao da turbulencia financeira internacional de 2008. Além do aumento do custo de oportunidade, com o aperto monetário iniciado em meados de 2013, vale lembrar que as IF enfrentaram elevaçao da inadimplencia em razao da crise económica doméstica nesse período. Contudo, os indicadores de concentraçao mostraram ser relativamente mais persistentes que os de concorrencia, que já voltaram aos patamares pré-crise.
A média e a mediana do Lerner registraram reduçao expressiva a partir de 2017. Os resultados sugerem que a concorrencia pode ter aumentado devido a questöes regulatórias, principalmente a proporcionalidade da regulaçao prudencial de requerimento de capital, como aponta a literatura mais recente (Claessens & Laeven, 2004) e a segunda hipótese de pesquisa. Com a implementaçao da Resoluçao n° 4.553/2017 (Conselho Monetário Nacional [CMN], 2017), IF menores passaram a seguir regras mais simples que as aplicadas aos bancos de grande porte, contribuindo para aumentar a competiçao no mercado brasileiro.
Ademais, vale destacar a relevancia das cooperativas de crédito, ampliando a oferta de crédito suplementar, assim como das inovaçöes tecnológicas, que também impactam o funcionamento do sistema. Os grupos de IF que compöem o mercado de crédito nacional apresentam níveis de competiçao heterogeneos, nesse contexto, este artigo encontrou evidencias de que a concorrencia no segmento nao bancário tipo b3S é maior que a observada no bancário tipo b1 e b2, conforme estabelece a terceira hipótese.
As empresas financeiras intensivas no uso de tecnología, que incluí bancos digitais, fintechs e grandes companhias, evoluiram nos últimos anos, aumentando o potencial de estimular a concorrencia no mercado de crédito. Urge lembrar que os indicadores de concentraçao e de competiçao estimados neste artigo levam em conta a entrada recente dos bancos digitais cujas informaçöes contábeis encontram-se registradas no IF.data. Contudo, nao há dados públicos disponíveis para cálculo dos índices referentes as fintechs, constituindo-se, portanto, uma limitaçao da pesquisa.
Ao comparar o desempenho concorrencial por TCB, nota-se que o Índice de Lerner das instituiçöes bancárias tipo b1 acompanha a trajetória e o nível da média do sistema. O mark-up médio tanto para b1 quanto para b2 fechou o I tri 2019 nos mesmos patamares registrados no início da série. A partir do III tri 2009, ou seja, 1 ano após o início da turbulencia económica mundial, os Índices subiram, corroborando a perspectiva de que as grandes instituiçöes, como os bancos, contribuíram para a piora da competitividade do sistema. Desde o IV tri de 2016, o segmento bancário apresentou melhora no nível de competiçao.
No tocante ao segmento nao bancário, a média ponderada do mark-up das cooperativas de crédito singular (tipo b3S) foi a única que apresentou queda significativa no período analisado comparativamente aos demais TCB (b1, b2 e n1). Desde o começo do recorte temporal, as cooperativas se destacaram por apresentar níveis de competitividade superiores a b1, b2 e n1. As instituiçöes nao bancárias de crédito (n1) mantiveram seus mark-ups em níveis elevados ao longo da série e superiores aos apresentados pelos demais TCB, sugerindo a menor competiçao nesse tipo de consolidado bancário
Conclui-se, com fulcro no artigo conduzido e a despeito das limitaçöes apontadas, que as estimativas e as análises da concorrencia no ámbito do mercado de crédito brasileiro por si já preenchem uma lacuna de pesquisa. Diante da ausencia de consenso académico, este trabalho elucida, ainda, a relaçao entre concentraçao e competitividade, bem como traz a tona a releváncia da regulaçao e das cooperativas de crédito sobre as margens praticadas nas operaçöes de crédito.
A literatura teórico-empírica sobre a concorrencia na indústria financeira é rara, especialmente em relaçao as naçöes em desenvolvimento (Bikker & Haff, 2002; Turk-Ariss, 2010). Assim, o presente trabalho contribui para a epistemologia academica e prática, ao se tornar útil para apoiar políticas de ordem microeconómica capazes de promover a contestabilidade. Iniciativas que flexibilizem restriçöes a entrada de instituiçöes nao bancárias e de empresas que operam com tecnología podem contribuir para a queda das margens cobradas nas operaçöes de crédito. Nesse contexto, espera-se que a Resoluçao n°4.656/2018 (Conselho Monetário Nacional [CMN], 2018), que regulamentou a atuaçao das fintechs de crédito, estimule a competiçao no setor.
As estimativas de concentraçao e de competiçao devem avançar no sentido de incorporar outros países e demais produtos e serviços financeiros. As publicaçöes dos estudos empíricos no ámbito internacional, em geral, se atem a atividade bancária de forma agregada, e nao as operaçöes de crédito de forma apartada (Turk-Ariss, 2010). Assim, estudos futuros que estimem a competitividade no mercado de empréstimos global tendem a ganhar relevância. Nessa perspectiva, torna-se viável comparar, inclusive, o nível da concorrencia nacional com o apresentado pela América Latina e Caribe, e por países competidores.
Pesquisas também merecem abranger outros produtos e serviços, como meios de pagamentos (cartöes), transferencias e depósitos e, dessa maneira, obter uma avaliaçao completa da competitividade. A ampliaçao de escopo se justifica pelo crescimento do mercado de pagamentos e pelo impacto recente da concorrencia, em especial, no setor de adquirencia. O desenvolvimento e a relevância da indústria de pagamentos nao vem acompanhados de trabalhos científicos. Nao foram identificados, ainda, estudos específicos sobre a atividade de credenciamento. Akin, Aysan, Borici e Yildiran (2013) e Shaffer e Thomas (2007) avaliam o setor sob a ótica dos bancos emissores e concluíram que a regulaçao aumentou a competiçao no setor.
Identificar o impacto da concorrencia sobre o risco sistemico também constitui uma fecunda linha de pesquisa. Em virtude dos efeitos sistemicos adversos, o regulador do sistema financeiro se pergunta quais fatores levam a iminencia da quebra de um banco. No que concerne a relaçao entre competiçao e estabilidade, nao há convergencia. A vertente tradicional argumenta que sistemas bancários mais competitivos geram instabilidade, pois o poder de mercado reduziria a assimetria informacional e a exposiçao ao risco dos bancos. Evidencias teórico-empíricas também indicam que a competiçao eleva a robustez dos bancos, pois a eficiencia cria incentivos para selecionar e monitorar credores, reduzindo a inadimplencia nos empréstimos concedidos.
REFERENCIAS
Allen, F., & Gale, D. (2004). Competition and financial stability. Journal of Money, Credit, and Banking, 36(3), 453-480. Retrieved from https:// econpapers.repec.org/article/mcbjmoncb/ v_3a36_3ay_3a2004_3ai_3a3_3ap_3a453-80.htm
Akin, G. G., Aysan, A. F., Borici, D., & Yildiran, L. (2013). Regulate one service, tame the entire market: Credit cards in Turkey. Journal of Banking and Finance, 37(4), 11951204. https://doi.org/10.1016/j.jbankfin.2012.11.016
Albuquerque, M. C. C. (1987).Uma análise translog sobre mudança tecnológica e efeitos de escala: Um caso de modernizaçao ineficiente. Pesquisa e Planejamento Econômico, 7(1), 191-220. Retrieved from http:// repositorio.ipea.gov.br/handle/11058/6027
Angelini, P., & Ceterolli, N. (2003) The effects of regulatory reform on competition in the banking industry. Journal of Money, Credit, and Banking, 35(5), 663-684. https://doi.org/10.1353/mcb.2003.0033
Bank for International Settlements. (2018). Structural changes in banking after the crises [CGPS Working paper n. 60]. Bank for International Settlements, New York, USA. Retrieved from https://www.bis.org/publ/cgfs60.htm
Banco Central do Brasil. (2017). Relatório de economia bancária 2017. Retrieved from https://www.bcb.gov.br/pec/ depep/spread/REB_2017.pdf
Banco Central do Brasil. (2018). Relatório de economia bancária 2018. Retrieved from https://www.bcb.gov.br/ content/publicacoes/relatorioeconomiabancaria/ reb_2018.pdf
Berger, A., Klapper, L., & Turk-Ariss, R. (2009). Bank competition and financial stability. Journal of Financial Services Research, 35(2), 99-118. https://doi.org/10.1007/ s10693-008-0050-7
Berger, A., Leora, K, & Turk-Ariss, R. (2008). Bank competition and financial stability [Policy Research Working Paper n° 4696]. World Bank, Washington, DC, USA. Retrieved from http://hdl.handle.net/10986/6794
Bikker, J., & Haaf, K. (2002). Competition, concentration, and their relationship: An empirical analysis of the banking industry. Journal of Banking and Finance, 26(11), 2191-2214. https://doi.org/10.1016/S03784266(02)00205-4
Bikker, J. A., Shaffer, S., & Spierdijk, L. (2009). Assessing competition with the panzar-rosse model: The role of scale, costs, and equilibrium [DNB Working Paper n° 225]. De Nederlandsche Bank, Amsterdam, Netherlands. Retrieved from https://www.dnb.nl/ binaries/Assessing%20Competition%20with%20 the%20Panzar-Rosse%20Model_tcm46-224137.pdf
Boone, J. A. (2008). A new way to measure competition. The Economic Journal, 118(531), 1245-1261. https://doi. org/10.1111/j.1468-0297.2008.02168.x
Bulow, J. I., & Shoven, J.B. (1978). The bankruptcy decision. The Bell Journal of Economics, 9(2), 437-456. https://doi. org/10.2307/3003592
Chamberlin, E. H. (1962). The theory of monopolistic competition. Cambridge, MA: Harvard University Press.
Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272. https://doi.org/10.1016/S0261-5606(00)00048-6
Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 55(1), 28-45. https://doi.org/10.2307/1927992
Claessens, S., & Laeven, L. (2004). What drives bank competition? Some international evidence. Journal of Money, Credit & Banking, 36(3), 563-583. https://doi.org/10.1353/ mcb.2004.0044
Conselho Monetário Nacional [CMN]. (2017). Resoluçao n. 4.553, de 30 de janeiro de 2017: Estabelece a segmentaçao do conjunto das instituiçöes financeiras e demais instituiçöes autorizadas a funcionar pelo Banco Central do Brasil para fins de aplicaçao proporcional da regulaçao prudencial. Diário Oficial da Unido. Retrieved from https://www.bcb.gov. br/pre/normativos/busca/downloadNormativo. asp?arquivo=/Lists/Normativos/Attachments/5033 5/ Res_4553_v1_O.pdf
Conselho Monetário Nacional [CMN]. (2018). Resoluçao n. 4.656, de 26 de abril de 2018: Dispöe sobre a sociedade de crédito direto e a sociedade de empréstimo entre pessoas, disciplina a realizaçao de operaçöes de empréstimo e de financiamento entre pessoas por meio de plataforma eletrônica e estabelece os requisitos e os procedimentos para autorizaçao para funcionamento, transferencia de controle societário, reorganizaçao societária e cancelamento da autorizaçao dessas instituiçöes. Diário Oficial da Unido. Retrieved from https://www.bcb.gov.br/pre/normativos/busca/ downloadNormativo.asp?arquivo=/Lists/Normativos/ Attachments/50579/Res_4656_v1_O.pdf
Dasgupta, P., & Stiglitz, J. (1981). Entry innovation, exit: Towards a dynamic theory of industrial market structure. European Economic Review, 15(2), 137-158. https://doi.org/10.1016/0014-2921(81)90084-2
Delis, M. D., & Tsionas. E.G. (2009). The joint estimation of bank-level market power and efficiency. Journal of Banking & Finance, 33(10), 1842-1850. http://doi. org/10.1016/j.jbankfin.2009.04.006
Fisher, R.A. (1932). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Fungácová, Z., Shamshur, A., & Weill, L. (2017). Does bank competition reduce cost of credit? Cross-country evidence from Europe. Journal of Banking and Finance, 83(C), 104-120. https://doi.org/10.1016/j. jbankfin.2017.06.014
Gilbert, A. (1984). Bank market structure and competition: A survey. Journal of Money, Credit, and Banking, 16(4), 617-644. https://doi.org/10.2307/1992096
Hankir, Y., Rauch, C., & Umber, M. P. (2011). Bank M&A: A market power story? Journal of Banking & Finance, 35(9), p. 2341-2354. https://doi.org/10.1016/j. jbankfin.2011.01.030
Hausman, J.A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251-1271. https://doi. org/10.2307/1913827
Lerner, A. (1934). The concept of monopoly and the measurement of monopoly power. The Review of Economic Studies, 1(3), 157-175. https://doi.org/10.2307/2967480
Maddala, G. S., & Wu, S. A. (1999). Comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631-652. https://doi.org/10.1111/1468-0084.0610s1631
Maghyereh, A. I., & Awartani, B. (2014). Bank distress prediction: Empirical evidence from the gulf cooperation council countries. Research in International Business and Finance, 30(C), 126-147. https://doi.org/10.1016/j. ribaf.2013.07.001
Matutes, C., & Vives, X. (1996). Competition for deposits, fragility, and insurance. Journal of Financial Intermediation, 5(2), 184-216. https://doi.org/10.1006/jfin.1996.0010
Matutes, C., & Vives, X. (2000). Imperfect competition, risk taking, and regulation in banking. European Economic Review, 44(1), 1-34. https://doi.org/10.1016/S00142921(98)00057-9
Montes, C. P. (2014). The effect on competition of banking sector consolidation following the financial crisis of 2008. Journal of Banking & Finance, 43(C), 124-136. https://doi.org/10.1016/j.jbankfin.2014.03.004
Ornelas, J. R. H., Silva, M. S da., & Van Doornik, B. F. N. (2020). Informational switching costs, bank competition and the cost of finance [Working Paper Series n° 512], Banco Central do Brasil, Brasilia, DF, Brazil .Retrieved from https://www.bcb.gov.br/pec/wps/ingl/wps512. pdf
Panzar, J. C., & Rosse, J. N. (1987). Testing for "monopoly" equilibrium. Journal of Industrial Economics, 35(4), 443-56. https://doi.org/10.2307/2098582
Pindyck, R. S., & Rubinfeld, D.L. (2010). Microeconomia. Sao Paulo: Pearson Education do Brasil.
Silva, M. S. (2014). Avaliaçao do processo de concentraçaocompetiçao no setor bancário brasileiro [Trabalhos para discussao, n° 377], Banco Central do Brasil, Brasilia, DF, Brazil.
Shaffer, S., & Srinivasan, S. (2002). Structure-pricing linkages among single-market banks, controlling for credit quality. Applied Economics Letters, 9(10), 653-656. https://doi.org/10.1080/13504850110115159
Shaffer, S., & Thomas, L. (2007). A reassessment of market power among credit card banks. Applied Financial Economics, 17(9), 755-767. https://doi. org/10.1080/09603100600771042
Tabak, B. M., Gomes, M. R., & Medeiros, Jr., M. (2015). The impact of market power at bank level in risk-taking: The brazilian case. International Review of Financial Analysis, 40(C), 154-165. https://doi.org/10.1016/j. irfa.2015.05.014
Turk-Ariss, R. (2010). On the implications of market power in banking: Evidence from developing countries. Journal of Banking & Finance, 34(4), 765-775. https://doi. org/10.1016/j.jbankfin.2009.09.004
Tonooka, E. K., & Koyama, S. M. (2003). Taxa de juros e concentraçao bancária no Brasil [Textos para discussao, n° 62]. Banco Central do Brasil, Brasilia, DF, Brasil.
VanHoose, D. (2010). The industrial organization of banking: Bank behavior, market structure and regulation. New York: Springer.
VanHoose, D. (1985). Bank and market structure and monetary control. Journal of Money, Credit, and Banking, 17(3), 298-311. https://doi.org/10.2307/1992626
Vries, C. G. de. (2005). The simple economics of bank fragility. Journal of Banking and Finance, 29(4), 803-825. https://doi.org/10.1016/jjbankfin.2004.08.003
Autores
Monique de Abreu Azevedo·
Setor Bancário Sul, Quadra 3, Bloco B, Edificio Sede do Banco Central do Brasil, 7° andar, Asa Sul, 70074-900, Brasilia, DF, Brasil.
E-mail: [email protected]
https://orcid.org/0000-0003-4897-7227
Ivan Ricardo Gartner
Campus Universitário Darcy Ribeiro, s/n, Edificio FACE, Sala B2-B1-47/7, 70910-900, Brasilia, DF, Brasil.
E-mail: [email protected]
https://orcid.org/0000-0002-9780-1212
* Autor Correspondente
Contribuiçöes dos Autores
1a autora: Revisao de literatura; planejamento metodológico; coleta dos dados; aplicaçao do modelo; análise dos dados; interpretaçao dos resultados; redaçao do manuscrito.
2° autor: Revisao de literatura; planejamento metodológico; coleta dos dados; aplicaçao do modelo; análise dos dados; interpretaçao dos resultados; redaçao do manuscrito.
Disponibilidade dos Dados
Todos os dados e materiais foram disponibilizados publicamente por meio da plataforma Mendeley e podem ser acessados em:
de Abreu Azevedo, Monique (2020), "Data " for "Concentration and Competition in the Domestic Credit Market"", Mendeley Data, vl http://dx.doi.org/10.17632/c 5kzfxbbb4.1
Financiamento
A 1a autora agradece ao apoio técnico e financeiro concedido pelo Banco Central do Brasil. As conclusoes da pesquisa sao de responsabilidade dos autores, nao refletindo, portanto, a opiniao desta Autarquía.
Conflito de Interesses
Os autores informaram que nao há conflito de interesses.
Direitos Autorais
A RAC detém os direitos autorais deste conteúdo.
Verificaçâo de Plágio
A RAC mantém a prática de submeter todos os documentos aprovados para publicaçao â verificaçâo de plágio, mediante o emprego de ferramentas específicas, e.g.: iThenticate.
Método de Revisäo por Pares
Este conteúdo foi avaliado utilizando o processo de revisao por pares duplo-cego (double-blind peer-review). A divulgaçao das informaçöes dos pareceristas constantes na primeira página é feita somente após a conclusao do processo avaliativo, e com o consentimento voluntário dos respectivos pareceristas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Context: the financial market has experienced sharp restructuring and mergers in recent decades. As banks expand the scope of their activities, they raise concerns about the impact on the sector's competitiveness. If the characteristics of the financial industry, which contribute to make the sector more concentrated, can make it less competitive, it implies assessing the relationship between concentration and competition. Objective: the general objective of this study is to promote diagnosis of the organization of the national credit market by calculating and analyzing concentration and competition indicators, between 2000 and 2019. Methods: to measure concentration, the Herfindahl-Hirschman and the Five Major Concentration Ratio indexes are used. The degree of competition is estimated via Lerner's econometric model applied to data displayed on a panel with accounting and financial information from financial institutions. Results: the results suggest that although the concentration has increased in the time frame considered, competitiveness has not deteriorated, reinforcing the argument of seminal references that concentration does not necessarily harm competition. Conclusion: in the absence of academic consensus, this work elucidates the relationship between concentration and competitiveness. Still, it gains relevance by pointing out the role of regulation and credit unions in increasing recent competition. The work thus becomes capable of supporting policies that promote contestability, such as initiatives that relax restrictions on the entry of non-banking institutions and financial technology companies.





