Abstract

Sub-cellular trace element quantifications of nano-heterogeneities in brain tissues offer unprecedented ways to explore at elemental level the interplay between cellular compartments in neurodegenerative pathologies. We designed a quasi-correlative method for analytical nanoimaging of the substantia nigra, based on transmission electron microscopy and synchrotron X-ray fluorescence. It combines ultrastructural identifications of cellular compartments and trace element nanoimaging near detection limits, for increased signal-to-noise ratios. Elemental composition of different organelles is compared to cytoplasmic and nuclear compartments in dopaminergic neurons of rat substantia nigra. They exhibit 150–460 ppm of Fe, with P/Zn/Fe-rich nucleoli in a P/S-depleted nuclear matrix and Ca-rich rough endoplasmic reticula. Cytoplasm analysis displays sub-micron Fe/S-rich granules, including lipofuscin. Following AAV-mediated overexpression of α-synuclein protein associated with Parkinson’s disease, these granules shift towards higher Fe concentrations. This effect advocates for metal (Fe) dyshomeostasis in discrete cytoplasmic regions, illustrating the use of this method to explore neuronal dysfunction in brain diseases.

Lemelle et al. describe the use of TEM and synchrotron X-ray fluorescence for quasi-correlative nanoimaging and sub-cellular trace element quantification of rat brain tissue. They further observe elemental (iron and sulfur) dyshomeostasis in cytoplasmic granules when overexpressing α-synuclein protein associated with Parkinson’s disease, demonstrating the usefulness of this method to further explore dysfunctions at organelle levels in brain diseases.

Details

Title
Nano-imaging trace elements at organelle levels in substantia nigra overexpressing α-synuclein to model Parkinson’s disease
Author
Lemelle, Laurence 1   VIAFID ORCID Logo  ; Simionovici Alexandre 2   VIAFID ORCID Logo  ; Colin, Philippe 3 ; Knott, Graham 4   VIAFID ORCID Logo  ; Bohic Sylvain 5   VIAFID ORCID Logo  ; Cloetens, Peter 6   VIAFID ORCID Logo  ; Schneider, Bernard L 3   VIAFID ORCID Logo 

 LGL-TPE, ENS de Lyon, Université de Lyon, CNRS, Lyon, France (GRID:grid.15140.31) (ISNI:0000 0001 2175 9188) 
 ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282); Institut Universitaire de France (IUF), Paris, France (GRID:grid.440891.0) (ISNI:0000 0001 1931 4817) 
 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049); Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049) 
 Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000000121839049) 
 INSERM UA7, Synchrotron Radiation for Biomedicine, STROBE, Université Grenoble Alpes, Grenoble, France (GRID:grid.450307.5); ESRF—The European Synchrotron, ID16A Beamline, Grenoble Cedex 9, France (GRID:grid.450307.5) 
 ESRF—The European Synchrotron, ID16A Beamline, Grenoble Cedex 9, France (GRID:grid.450307.5) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2421630858
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.