It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Current immunohistochemical methods of studying microglia in the post-mortem human brain do not capture the heterogeneity of microglial function in response to damage and disease. We therefore investigated the expression of eight myeloid cell proteins associated with changes in function alongside Iba1. To study the myeloid cells we used immunohistochemistry on post-mortem human middle temporal gyrus sections from neurologically normal individuals. First we investigated co-labelling between the classical ‘activation’ marker, HLA-DR and each of the other markers of interest. Significant co-labelling between HLA-DR with CD206, CD32, CD163, or L-Ferritin was observed, although complete overlap of expression of HLA-DR with aforementioned markers was not observed. A qualitative assessment also demonstrated that perivascular macrophages expressed higher levels of the markers of interest we investigated than microglia, suggesting perivascular macrophages show a more phagocytic and antigen presentation state in the human brain. To determine whether the markers of interest were expressed in different functional states, the immunoreactivity for each marker was qualitatively assessed on microglial morphologies. Degenerating marker, L-Ferritin, was specific for dystrophic microglia. We demonstrate that microglial heterogeneity can be investigated in immunohistochemically stain post-mortem human tissue by integrating the single-cell abundance of proteins and cell morphology to infer function.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Auckland, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, Centre for Brain Research, Faculty of Medical and Health Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343)
2 University of Auckland, Centre for Brain Research, Faculty of Medical and Health Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343); University of Auckland, Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Science, Auckland, New Zealand (GRID:grid.9654.e) (ISNI:0000 0004 0372 3343)