It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Worldwide the rate of unplanned pregnancies is more than 40%. Identifying women at risk of pregnancy can help prevent negative outcomes and also reduce healthcare costs of potential complications. It can also allow the investigation of the natural history of pregnancy outcomes, such as ectopic pregnancies or miscarriages. The use of medical records databases has been a crucial development in the field of pharmacoepidemiology – e.g. The Health Improvement Network (THIN) database is a validated database representative of the UK population. This project aimed to test the feasibility of identifying a population of women of childbearing age who are at risk of pregnancy not using any contraception in THIN database.
Methods
First a cohort of women of childbearing age (15-45yo) was identified. By applying a computer-based algorithm, containing codes for contraception methods or other suggestion of contraception, the risk of pregnancy was then ascertained. Next, two validation steps were implemented: 1) Revision of medical records/free text and 2) Questionnaires were sent to primary care practitioners (PCP) of women whose medical records had been reviewed. Positive predicted values (PPV) were calculated.
Results
A total of 266,433 women were identified in THIN. For the first validation step, 123 records were reviewed, with a PPV of 99.2% (95%CI: 95.5–99.9). For the questionnaires step, the PPV was of 82.3% (95%CI: 70–91.1). Information on sexual behaviour and attitudes towards conception was not captured by THIN.
Conclusion
This study shows that by applying a comprehensive computer-based algorithm, THIN can be used to identify women at risk of pregnancy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer