Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A growing body of evidence now suggests that artificial intelligence and machine learning techniques can serve as an indispensable foundation for the process of drug design and discovery. In light of latest advancements in computing technologies, deep learning algorithms are being created during the development of clinically useful drugs for treatment of a number of diseases. In this review, we focus on the latest developments for three particular arenas in drug design and discovery research using deep learning approaches, such as generative adversarial network (GAN) frameworks. Firstly, we review drug design and discovery studies that leverage various GAN techniques to assess one main application such as molecular de novo design in drug design and discovery. In addition, we describe various GAN models to fulfill the dimension reduction task of single-cell data in the preclinical stage of the drug development pipeline. Furthermore, we depict several studies in de novo peptide and protein design using GAN frameworks. Moreover, we outline the limitations in regard to the previous drug design and discovery studies using GAN models. Finally, we present a discussion of directions and challenges for future research.

Details

Title
Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design
Author
Lin, Eugene; Lin, Chieh-Hsin; Hsien-Yuan Lane  VIAFID ORCID Logo 
First page
3250
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2425917643
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.