Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Region of interest (ROI) localization is one of the key preprocessing technologies for a finger-vein identification system, so an effective ROI definition can improve the matching accuracy. However, due to the impact of uneven illumination, equipment noise, as well as the distortion of finger position, etc., these make accurate ROI localization a very difficult task. To address these issues, in this paper, we propose a robust finger-vein ROI localization method, which is based on the 3σcriterion dynamic threshold strategy. The proposed method includes three main steps: First, the Kirsch edge detector is introduced to detect the horizontal-like edges in the acquired finger-vein image. Then, the obtained edge gradient image is divided into four parts: upper-left, upper-right, lower-left, and lower-right. For each part of the image, the three-level dynamic threshold, which is based on the 3σcriterion of the normal distribution, is imposed to obtain more distinct and complete edge information. Finally, through labeling the longest connected component at the same horizontal line, two reliable finger boundaries, which represent the upper and lower boundaries, respectively, are defined, and the ROI is localized in the region between these two boundaries. Extensive experiments are carried out on four different finger-vein image datasets, including three publicly available datasets and one of our newly developed finger-vein datasets with 37,080 finger-vein samples and 1030 individuals. The experimental results indicate that our proposed method has very competitive ROI localization performance, as well as satisfactory matching results on different datasets.

Details

Title
Robust Finger-vein ROI Localization Based on the 3σ Criterion Dynamic Threshold Strategy
Author
Yao, Qiong; Song, Dan  VIAFID ORCID Logo  ; Xu, Xiang  VIAFID ORCID Logo 
First page
3997
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426061830
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.