Abstract

We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a “melt-quench” ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO2 with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.

Details

Title
Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
Author
Sivaraman Ganesh 1   VIAFID ORCID Logo  ; Krishnamoorthy Anand Narayanan 2 ; Baur Matthias 3   VIAFID ORCID Logo  ; Holm, Christian 3 ; Stan Marius 4 ; Csányi Gábor 5 ; Benmore, Chris 6 ; Vázquez-Mayagoitia Álvaro 7   VIAFID ORCID Logo 

 Argonne National Laboratory, Leadership Computing Facility, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Universität Stuttgart, Institute for Computational Physics, Stuttgart, Germany (GRID:grid.5719.a) (ISNI:0000 0004 1936 9713); Forschungszentrum Jülich GmbH, Helmholtz-Institute Münster: Ionics in Energy Storage (IEK-12), Münster, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X) 
 Universität Stuttgart, Institute for Computational Physics, Stuttgart, Germany (GRID:grid.5719.a) (ISNI:0000 0004 1936 9713) 
 Argonne National Laboratory, Applied Materials Division, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 University of Cambridge, Department of Engineering, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
 Argonne National Laboratory, X-ray Science Division, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Argonne National Laboratory, Computational Science Division, Argonne, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426355345
Copyright
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.