It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Host switch events of influenza A viruses (IAVs) continuously pose a zoonotic threat to humans. In 2013, swine-origin H1N1 IAVs emerged in dogs soon after they were detected in swine in the Guangxi province of China. This host switch was followed by multiple reassortment events between these H1N1 and previously circulating H3N2 canine IAVs (IAVs-C) in dogs. To evaluate the phenotype of these newly identified viruses, we characterized three swine-origin H1N1 IAVs-C and one reassortant H1N1 IAV-C. We found that H1N1 IAVs-C predominantly bound to human-type receptors, efficiently transmitted via direct contact in guinea pigs and replicated in human lung cells. Moreover, the swine-origin H1N1 IAVs-C were lethal in mice and were transmissible by respiratory droplets in guinea pigs. Importantly, sporadic human infections with these viruses have been detected, and preexisting immunity in humans might not be sufficient to prevent infections with these new viruses. Our results show the potential of H1N1 IAVs-C to infect and transmit in humans, suggesting that these viruses should be closely monitored in the future.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
2 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
3 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
4 College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
5 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
6 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
7 Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, USA
8 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA