Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We provide an overview of the tools directed to reversible and irreversible transformations of the magnetic structure of glass-covered microwires. The irreversible tools are the selection of the chemical composition, geometric ratio, and the stress-annealing. For reversible tuning we use the combination of magnetic fields and mechanical stresses. The studies were focused on the giant magnetoimpedance effect and the velocity of the domain walls propagation important for the technological applications. The essential increase of the giant magnetoimpedance effect and the control of the domain wall velocity were achieved as a result of the use of two types of control tools. The performed simulations reflect the real transformation of the helical domain structures experimentally found.

Details

Title
Reversible and Non-Reversible Transformation of Magnetic Structure in Amorphous Microwires
Author
Chizhik, Alexander; Gonzalez, Julian; Zhukov, Arcady  VIAFID ORCID Logo  ; Gawronski, Przemyslaw; Ipatov, Mihail; Corte-León, Paula  VIAFID ORCID Logo  ; Juan Mari Blanco; Zhukova, Valentina  VIAFID ORCID Logo 
First page
1450
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2427942131
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.