Abstract

The supercritical water oxidation is a significant way for the waste disposal. The diffusion of the oxygen in the water at the infinite dilution is simulated at 300 K and 1 atm, and 650 K, 673 K, 773 K, 873 K, 973 K, and 250 atm with the molecular dynamics software. The mean squared displacement method is used to calculate the diffusion coefficient. At 300 K, 1 atm, our calculation gives 0.20 ⋅ 10–8 m2/s, which is very near to three empirical equations. When the condition is beyond the critical point, these empirical equations lost their accuracy, and only Kawasaki-Oppenheim equation can be compared to our calculation results. At supercritical conditions, we illustrate the diffusion coefficients with the Arrhenius equation and the activation energy is 22.54 kJ/mol.

Details

Title
Determining diffusion coefficients of oxygen in supercritical water with molecular dynamics
Author
Zhao, Xiaoming; Liu, Yigang; Zou, Jian; Wang, Qiuxia; Liu, Hao; Zhang, Hua; Jin, Hui
Pages
S781-S787
Section
Selected Papers: Selection of papers on the topics of advanced computational methods for linear and non-linear heat and fluid-flow
Publication year
2019
Publication date
2019
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429072893
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.