Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon ion implantation was conducted on an AM60 magnesium alloy with fluences between 1 × 1016 and 6 × 1016 ions/cm2 and an energy of 35 keV. The microstructure and electrochemical properties of the samples were systematically characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman scattering, scanning electron microscopy, transmission electron microscopy, and electrochemical methods. These studies reveal that a 250 nm-thick C-rich layer is formed on the surface and the Mg2C3 phase embeds in the ion-implanted region. The crystal structure of the Mg2C3 was constructed, and an electronic density map was calculated by density-functional theory calculation. The large peak in the density of states (DOS) shows two atomic p orbitals for Mg2C3. The main electron energy is concentrated between −50 and −40 eV, and the electron energy mainly comes from Mg (p) and Mg (s). The electrochemical experiments reveal that the Ecorr is −1.35 V and Icorr is 20.1 μA/cm2 for the sample implanted with the optimal fluence of 6 × 1016 ions/cm2. The sample from C ion implantation gives rise to better corrosion resistance.

Details

Title
Corrosion Behavior and Mechanism of Carbon Ion-Implanted Magnesium Alloy
Author
Yu, Banglong; Dai, Jun; Ruan, Qingdong; Liu, Zili  VIAFID ORCID Logo  ; Chu, Paul K  VIAFID ORCID Logo 
First page
734
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429471826
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.