Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the results of forced wear simulation of the friction lift guide rails. The forced wear in the case discussed is an effect of plastic strain of the guide rail surface due to emergency braking of the lift. For the purpose of qualitative and quantitative assessment of wear, the authors applied the numerical simulation of a stray magnetic field. Application of this method allowed evaluating the degree of wear based on the stray field changes. Application of this simulation method allowed obtaining satisfactory results of qualitative and quantitative assessment of the guide rail wear. The intention of this paper was to prove that the permanent magnetic field and the stray field can be applied for the efficient detection of the steel guide rail damages and to verify the possibility of making the quantitative assessment related to the guide rail wear degree versus the personal lift service life.

Details

Title
Application of Stray Magnetic Field for Monitoring the Wear Degree in Steel Components of the Lift Guide Rail System
Author
Lonkwic, Poul  VIAFID ORCID Logo  ; Krakowski, Tomasz; Ruta, Hubert
First page
1008
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429484125
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.