Full Text

Turn on search term navigation

Copyright © 2020 Yongchao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Effective fault diagnosis methods can ensure the safe and reliable operation of the machines. In recent years, deep learning technology has been applied to diagnose various mechanical equipment faults. However, in real industries, the data distribution under different working conditions is often different, which leads to serious degradation of diagnostic performance. In order to solve the issue, this study proposes a new deep convolutional domain adaptation network (DCDAN) method for bearing fault diagnosis. This method implements cross-domain fault diagnosis by using the labeled source domain data and the unlabeled target domain data as training data. In DCDAN, firstly, a convolutional neural network is applied to extract features of source domain data and target domain data. Then, the domain distribution discrepancy is reduced through minimizing probability distribution distance of multiple kernel maximum mean discrepancies (MK-MMD) and maximizing the domain recognition error of domain classifier. Finally, the source domain classification error is minimized. Extensive experiments on two rolling bearing datasets verify that the proposed method can implement accurate cross-domain fault diagnosis under different working conditions. The study may provide a promising tool for bearing fault diagnosis under different working conditions.

Details

Title
A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions
Author
Zhang, Yongchao 1 ; Ren, Zhaohui 2   VIAFID ORCID Logo  ; Zhou, Shihua 1 

 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China 
 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; Shenyang Shengna Equipment Manufacturing Technology Institute Co., Ltd., Shenyang 110200, China 
Editor
Anil Kumar
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429649555
Copyright
Copyright © 2020 Yongchao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/