Full Text

Turn on search term navigation

Copyright © 2020 Ya-Nan Feng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Multiobjective evolutionary algorithms (MOEAs) with higher population diversity have been extensively presented in literature studies and shown great potential in the approximate Pareto front (PF). Especially, in the recent development of MOEAs, the reference line method is increasingly favored due to its diversity enhancement nature and auxiliary selection mechanism based on the uniformly distributed reference line. However, the existing reference line method ignores the nadir point and consequently causes the Pareto incompatibility problem, which makes the algorithm convergence worse. To address this issue, a multiobjective evolutionary algorithm based on the adaptive cross-reference line method, called MOEA-CRL, is proposed under the framework of the indicator-based MOEAs. Based on the dominant penalty distance (DPD) indicator, the cross-reference line method can not only solve the Pareto incompatibility problem but also enhance the population diversity on the convex PF and improve the performances of MOEA-CRL for irregular PF. In addition, the MOEA-CRL adjusts the distribution of the cross-reference lines directly defined by the DPD indicator according to the contributing solutions. Therefore, the adaptation of cross-reference lines will not be affected by the population size and the uniform distribution of cross-reference lines can be maintained. The MOEA-CRL is examined and compared with other MOEAs on several benchmark problems. The experimental results show that the MOEA-CRL is superior to several advanced MOEAs, especially on the convex PF. The MOEA-CRL exhibits the flexibility in population size setting and the great versatility in various multiobjective optimization problems (MOPs) and many-objective optimization problems (MaOPs).

Details

Title
A Cross-Reference Line Method Based Multiobjective Evolutionary Algorithm to Enhance Population Diversity
Author
Ya-Nan Feng 1 ; Zhao-Hui, Wang 1   VIAFID ORCID Logo  ; Jia-Rong, Fan 1 ; Fu, Ting 1 ; Zhi-Yuan, Chen 2 

 Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan 430081, China; Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan 430081, China 
 Department of Mechanical Engineering, Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China 
Editor
Juan Carlos Fernández
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429650430
Copyright
Copyright © 2020 Ya-Nan Feng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/