Abstract

Population balance equation is converted to three moment equations to describe the dynamical behavior of particle size distribution in air in the rainfall. The scavenging coefficient is expressed as a polynomial function of the particle diameter, the raindrop diameter and the raindrop velocity. The evolutions of particle size distribution are simulated numerically and the effects of the raindrop size distribution on particle size distribution are studied. The results show that the raindrops with smaller geometric mean diameter and geometric standard deviation of size remove particles much more efficiently. The particles which fall in the “greenfield gap” are the most difficult to be scavenged from the air.

Details

Title
Evolution of particle size distribution in air in the rainfall process via the moment method
Author
Fu-Jun, Gan; Jian-Zhong, Lin
Pages
1372-1376
Section
Original Scientific and Short Papers
Publication year
2012
Publication date
2012
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429868522
Copyright
© 2012. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.