Full text

Turn on search term navigation

© 2020 Authier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many conservation instruments rely on detecting and estimating a population decline in a target species to take action. Trend estimation is difficult because of small sample size and relatively large uncertainty in abundance/density estimates of many wild populations of animals. Focusing on cetaceans, we performed a prospective analysis to estimate power, type-I, sign (type-S) and magnitude (type-M) error rates of detecting a decline in short time-series of abundance estimates with different signal-to-noise ratio. We contrasted results from both unregularized (classical) and regularized approaches. The latter allows to incorporate prior information when estimating a trend. Power to detect a statistically significant estimates was in general lower than 80%, except for large declines. The unregularized approach (status quo) had inflated type-I error rates and gave biased (either over- or under-) estimates of a trend. The regularized approach with a weakly-informative prior offered the best trade-off in terms of bias, statistical power, type-I, type-S and type-M error rates and confidence interval coverage. To facilitate timely conservation decisions, we recommend to use the regularized approach with a weakly-informative prior in the detection and estimation of trend with short and noisy time-series of abundance estimates.

Details

Title
Of power and despair in cetacean conservation: estimation and detection of trend in abundance with noisy and short time-series
Author
Authier, Matthieu; Galatius, Anders; Gilles, Anita; Spitz, Jérôme
Publication year
2020
Publication date
Aug 7, 2020
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2431119454
Copyright
© 2020 Authier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.