Abstract

Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater’s bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies.

The second extended phase of the Dawn mission provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show that the central faculae were sourced in an impact-induced melt chamber, with a contribution from the deep brine reservoir, while the Vinalia Faculae were sourced by the deep brine reservoir alone.

Details

Title
The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion
Author
Scully, J E, C 1   VIAFID ORCID Logo  ; Schenk, P M 2 ; Castillo-Rogez, J C 1 ; Buczkowski, D L 3 ; Williams, D A 4   VIAFID ORCID Logo  ; Pasckert, J H 5 ; Duarte, K D 6 ; Romero, V N 6 ; Quick, L C 7 ; Sori, M M 8 ; Landis, M E 9 ; Raymond, C A 1   VIAFID ORCID Logo  ; Neesemann, A 10   VIAFID ORCID Logo  ; Schmidt, B E 6   VIAFID ORCID Logo  ; Sizemore, H G 11   VIAFID ORCID Logo  ; Russell, C T 12 

 California Institute of Technology, Jet Propulsion Laboratory, Pasadena, USA (GRID:grid.20861.3d) (ISNI:0000000107068890) 
 Lunar and Planetary Institute, Houston, USA (GRID:grid.491513.b) (ISNI:0000 0001 0944 145X) 
 Johns Hopkins University Applied Physics Laboratory, Laurel, USA (GRID:grid.474430.0) (ISNI:0000 0004 0630 1170) 
 Arizona State University, School of Earth and Space Exploration, Tempe, USA (GRID:grid.215654.1) (ISNI:0000 0001 2151 2636) 
 University of Münster, Institute für Planetologie, Münster, Germany (GRID:grid.5949.1) (ISNI:0000 0001 2172 9288) 
 Georgia Institute of Technology, Atlanta, USA (GRID:grid.213917.f) (ISNI:0000 0001 2097 4943) 
 NASA Goddard Space Flight Center, Greenbelt, USA (GRID:grid.133275.1) (ISNI:0000 0004 0637 6666) 
 Lunar and Planetary Laboratory, Tucson, USA (GRID:grid.133275.1) 
 University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564) 
10  Free University of Berlin, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836) 
11  Planetary Science Institute, Tucson, USA (GRID:grid.423138.f) (ISNI:0000 0004 0637 3991) 
12  University of California, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2432264166
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.