Abstract

Supported atomic metal sites have discrete molecular orbitals. Precise control over the energies of these sites is key to achieving novel reaction pathways with superior selectivity. Here, we achieve selective oxygen (O2) activation by utilising a framework of cerium (Ce) cations to reduce the energy of 3d orbitals of isolated copper (Cu) sites. Operando X-ray absorption spectroscopy, electron paramagnetic resonance and density-functional theory simulations are used to demonstrate that a [Cu(I)O2]3− site selectively adsorbs molecular O2, forming a rarely reported electrophilic η2-O2 species at 298 K. Assisted by neighbouring Ce(III) cations, η2-O2 is finally reduced to two O2−, that create two Cu–O–Ce oxo-bridges at 453 K. The isolated Cu(I)/(II) sites are ten times more active in CO oxidation than CuO clusters, showing a turnover frequency of 0.028 ± 0.003 s−1 at 373 K and 0.01 bar PCO. The unique electronic structure of [Cu(I)O2]3− site suggests its potential in selective oxidation.

Precise control over the energy of atomic metal sites is key to unlocking novel reaction pathways. Here, the authors achieve selective oxygen activation by the isolated copper site on ceria, due to its reduced 3d orbital energy via cerium induced electron withdrawing effect.

Details

Title
Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria
Author
Kang, Liqun 1   VIAFID ORCID Logo  ; Wang Bolun 1   VIAFID ORCID Logo  ; Bing Qiming 2 ; Zalibera Michal 3   VIAFID ORCID Logo  ; Büchel, Robert 4 ; Xu Ruoyu 1 ; Wang, Qiming 1 ; Liu, Yiyun 1   VIAFID ORCID Logo  ; Gianolio Diego 5   VIAFID ORCID Logo  ; Tang, Chiu C 5 ; Gibson, Emma K 6   VIAFID ORCID Logo  ; Danaie Mohsen 7   VIAFID ORCID Logo  ; Allen, Christopher 7   VIAFID ORCID Logo  ; Wu, Ke 8 ; Marlow Sushila 1   VIAFID ORCID Logo  ; Ling-dong, Sun 8 ; He, Qian 9 ; Guan Shaoliang 10   VIAFID ORCID Logo  ; Savitsky Anton 11 ; Velasco-Vélez, Juan J 12 ; Callison, June 13   VIAFID ORCID Logo  ; Kay Christopher W M 14   VIAFID ORCID Logo  ; Pratsinis, Sotiris E 4   VIAFID ORCID Logo  ; Lubitz, Wolfgang 15 ; Jing-yao, Liu 2 ; Wang Feng Ryan 1   VIAFID ORCID Logo 

 University College London, Roberts Building, Torrington Place, Department of Chemical Engineering, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, P. R. China (GRID:grid.64924.3d) (ISNI:0000 0004 1760 5735) 
 Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, Bratislava, Slovak Republic (GRID:grid.440789.6) (ISNI:0000 0001 2226 7046) 
 Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780) 
 Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696) 
 School of Chemistry, University of Glasgow, Joseph Black Building. University Avenue, Glasgow, UK (GRID:grid.8756.c) (ISNI:0000 0001 2193 314X) 
 Electron Physical Science Imaging Center, Diamond Light Source Ltd., Didcot, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696); University of Oxford, Parks Road, Department of Materials, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
 National University of Singapore, Department of Materials Science and Engineering, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431) 
10  Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696); HarwellXPS—The EPSRC National Facility for Photoelectron Spectroscopy, Research Complex at Harwell (RCaH), Didcot, UK (GRID:grid.465239.f) 
11  Max-Planck-Institut Für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany (GRID:grid.419576.8) (ISNI:0000 0004 0491 861X); Technical University of Dortmund, Department of Physics, Dortmund, Germany (GRID:grid.5675.1) (ISNI:0000 0001 0416 9637) 
12  Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, Germany (GRID:grid.418028.7) (ISNI:0000 0001 0565 1775) 
13  UK Catalysis Hub, Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell, UK (GRID:grid.465239.f) 
14  London Centre for Nanotechnology, University College London, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); University of Saarland, Department of Chemistry, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
15  Max-Planck-Institut Für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany (GRID:grid.419576.8) (ISNI:0000 0004 0491 861X) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2432684280
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.